MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsgsum Structured version   Unicode version

Theorem tsmsgsum 18160
Description: The convergent points of a finite topological group sum are the closure of the finite group sum operation. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tsmsid.b  |-  B  =  ( Base `  G
)
tsmsid.z  |-  .0.  =  ( 0g `  G )
tsmsid.1  |-  ( ph  ->  G  e. CMnd )
tsmsid.2  |-  ( ph  ->  G  e.  TopSp )
tsmsid.a  |-  ( ph  ->  A  e.  V )
tsmsid.f  |-  ( ph  ->  F : A --> B )
tsmsid.w  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
tsmsgsum.j  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
tsmsgsum  |-  ( ph  ->  ( G tsums  F )  =  ( ( cls `  J ) `  {
( G  gsumg  F ) } ) )

Proof of Theorem tsmsgsum
Dummy variables  y 
z  u  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsid.2 . . . . . . 7  |-  ( ph  ->  G  e.  TopSp )
2 tsmsid.b . . . . . . . 8  |-  B  =  ( Base `  G
)
3 tsmsgsum.j . . . . . . . 8  |-  J  =  ( TopOpen `  G )
42, 3istps 16993 . . . . . . 7  |-  ( G  e.  TopSp 
<->  J  e.  (TopOn `  B ) )
51, 4sylib 189 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  B ) )
6 toponuni 16984 . . . . . 6  |-  ( J  e.  (TopOn `  B
)  ->  B  =  U. J )
75, 6syl 16 . . . . 5  |-  ( ph  ->  B  =  U. J
)
87eleq2d 2502 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  U. J ) )
9 elfpw 7400 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
109simplbi 447 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
1110adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  C_  A )
12 cnvimass 5216 . . . . . . . . . . . . . . 15  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  dom  F
13 tsmsid.f . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> B )
14 fdm 5587 . . . . . . . . . . . . . . . 16  |-  ( F : A --> B  ->  dom  F  =  A )
1513, 14syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  dom  F  =  A )
1612, 15syl5sseq 3388 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  A )
1716ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( `' F " ( _V 
\  {  .0.  }
) )  C_  A
)
1811, 17unssd 3515 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )  C_  A )
199simprbi 451 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
2019adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
21 tsmsid.w . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
2221ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin )
23 unfi 7366 . . . . . . . . . . . . 13  |-  ( ( y  e.  Fin  /\  ( `' F " ( _V 
\  {  .0.  }
) )  e.  Fin )  ->  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  e.  Fin )
2420, 22, 23syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )  e. 
Fin )
25 elfpw 7400 . . . . . . . . . . . 12  |-  ( ( y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ~P A  i^i  Fin )  <->  ( ( y  u.  ( `' F " ( _V  \  {  .0.  } ) ) ) 
C_  A  /\  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )  e. 
Fin ) )
2618, 24, 25sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ~P A  i^i  Fin ) )
27 ssun1 3502 . . . . . . . . . . . . . . 15  |-  y  C_  ( y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )
28 id 20 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  z  =  ( y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
2927, 28syl5sseqr 3389 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  y  C_  z
)
30 pm5.5 327 . . . . . . . . . . . . . 14  |-  ( y 
C_  z  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
3129, 30syl 16 . . . . . . . . . . . . 13  |-  ( z  =  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( ( y 
C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
32 reseq2 5133 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( F  |`  z )  =  ( F  |`  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) ) ) )
3332oveq2d 6089 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( G  gsumg  ( F  |`  z ) )  =  ( G  gsumg  ( F  |`  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) ) )
3433eleq1d 2501 . . . . . . . . . . . . 13  |-  ( z  =  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( ( G 
gsumg  ( F  |`  z ) )  e.  u  <->  ( G  gsumg  ( F  |`  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) ) ) )  e.  u
) )
3531, 34bitrd 245 . . . . . . . . . . . 12  |-  ( z  =  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) )  ->  ( ( y 
C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  ( y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  e.  u ) )
3635rspcv 3040 . . . . . . . . . . 11  |-  ( ( y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )  e.  ( ~P A  i^i  Fin )  ->  ( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  ( F  |`  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) ) ) )  e.  u
) )
3726, 36syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  ( F  |`  ( y  u.  ( `' F "
( _V  \  {  .0.  } ) ) ) ) )  e.  u
) )
38 tsmsid.z . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  G )
39 tsmsid.1 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e. CMnd )
4039ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
41 tsmsid.a . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  V )
4241ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  A  e.  V )
4313ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  F : A --> B )
44 ssun2 3503 . . . . . . . . . . . . 13  |-  ( `' F " ( _V 
\  {  .0.  }
) )  C_  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) )
4544a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( `' F " ( _V 
\  {  .0.  }
) )  C_  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) ) )
462, 38, 40, 42, 43, 45, 22gsumres 15512 . . . . . . . . . . 11  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  =  ( G 
gsumg  F ) )
4746eleq1d 2501 . . . . . . . . . 10  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( G  gsumg  ( F  |`  (
y  u.  ( `' F " ( _V 
\  {  .0.  }
) ) ) ) )  e.  u  <->  ( G  gsumg  F )  e.  u ) )
4837, 47sylibd 206 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  J )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  F )  e.  u ) )
4948rexlimdva 2822 . . . . . . . 8  |-  ( (
ph  /\  u  e.  J )  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  F )  e.  u ) )
50 elfpw 7400 . . . . . . . . . . . 12  |-  ( ( `' F " ( _V 
\  {  .0.  }
) )  e.  ( ~P A  i^i  Fin ) 
<->  ( ( `' F " ( _V  \  {  .0.  } ) )  C_  A  /\  ( `' F " ( _V  \  {  .0.  } ) )  e. 
Fin ) )
5116, 21, 50sylanbrc 646 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  e.  ( ~P A  i^i  Fin ) )
5251adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  ->  ( `' F " ( _V 
\  {  .0.  }
) )  e.  ( ~P A  i^i  Fin ) )
5339ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  ->  G  e. CMnd )
5441ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  ->  A  e.  V )
5513ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  ->  F : A --> B )
56 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  -> 
( `' F "
( _V  \  {  .0.  } ) )  C_  z )
5721ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  -> 
( `' F "
( _V  \  {  .0.  } ) )  e. 
Fin )
582, 38, 53, 54, 55, 56, 57gsumres 15512 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  -> 
( G  gsumg  ( F  |`  z
) )  =  ( G  gsumg  F ) )
59 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  -> 
( G  gsumg  F )  e.  u
)
6058, 59eqeltrd 2509 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  (
z  e.  ( ~P A  i^i  Fin )  /\  ( `' F "
( _V  \  {  .0.  } ) )  C_  z ) )  -> 
( G  gsumg  ( F  |`  z
) )  e.  u
)
6160expr 599 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  (
( `' F "
( _V  \  {  .0.  } ) )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
6261ralrimiva 2781 . . . . . . . . . 10  |-  ( (
ph  /\  ( u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  ->  A. z  e.  ( ~P A  i^i  Fin ) ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) )
63 sseq1 3361 . . . . . . . . . . . . 13  |-  ( y  =  ( `' F " ( _V  \  {  .0.  } ) )  -> 
( y  C_  z  <->  ( `' F " ( _V 
\  {  .0.  }
) )  C_  z
) )
6463imbi1d 309 . . . . . . . . . . . 12  |-  ( y  =  ( `' F " ( _V  \  {  .0.  } ) )  -> 
( ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  <->  ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) ) )
6564ralbidv 2717 . . . . . . . . . . 11  |-  ( y  =  ( `' F " ( _V  \  {  .0.  } ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  <->  A. z  e.  ( ~P A  i^i  Fin ) ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) ) )
6665rspcev 3044 . . . . . . . . . 10  |-  ( ( ( `' F "
( _V  \  {  .0.  } ) )  e.  ( ~P A  i^i  Fin )  /\  A. z  e.  ( ~P A  i^i  Fin ) ( ( `' F " ( _V 
\  {  .0.  }
) )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) )  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
6752, 62, 66syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( u  e.  J  /\  ( G  gsumg  F )  e.  u
) )  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
6867expr 599 . . . . . . . 8  |-  ( (
ph  /\  u  e.  J )  ->  (
( G  gsumg  F )  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6949, 68impbid 184 . . . . . . 7  |-  ( (
ph  /\  u  e.  J )  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  F )  e.  u ) )
70 disjsn 3860 . . . . . . . 8  |-  ( ( u  i^i  { ( G  gsumg  F ) } )  =  (/)  <->  -.  ( G  gsumg  F )  e.  u )
7170necon2abii 2653 . . . . . . 7  |-  ( ( G  gsumg  F )  e.  u  <->  ( u  i^i  { ( G  gsumg  F ) } )  =/=  (/) )
7269, 71syl6bb 253 . . . . . 6  |-  ( (
ph  /\  u  e.  J )  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( u  i^i 
{ ( G  gsumg  F ) } )  =/=  (/) ) )
7372imbi2d 308 . . . . 5  |-  ( (
ph  /\  u  e.  J )  ->  (
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  <->  ( x  e.  u  ->  ( u  i^i  { ( G 
gsumg  F ) } )  =/=  (/) ) ) )
7473ralbidva 2713 . . . 4  |-  ( ph  ->  ( A. u  e.  J  ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  <->  A. u  e.  J  ( x  e.  u  ->  ( u  i^i  { ( G 
gsumg  F ) } )  =/=  (/) ) ) )
758, 74anbi12d 692 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )  <-> 
( x  e.  U. J  /\  A. u  e.  J  ( x  e.  u  ->  ( u  i^i  { ( G  gsumg  F ) } )  =/=  (/) ) ) ) )
76 eqid 2435 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
772, 3, 76, 39, 1, 41, 13eltsms 18154 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  B  /\  A. u  e.  J  ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
78 topontop 16983 . . . . 5  |-  ( J  e.  (TopOn `  B
)  ->  J  e.  Top )
795, 78syl 16 . . . 4  |-  ( ph  ->  J  e.  Top )
802, 38, 39, 41, 13, 21gsumcl 15513 . . . . . 6  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)
8180snssd 3935 . . . . 5  |-  ( ph  ->  { ( G  gsumg  F ) }  C_  B )
8281, 7sseqtrd 3376 . . . 4  |-  ( ph  ->  { ( G  gsumg  F ) }  C_  U. J )
83 eqid 2435 . . . . 5  |-  U. J  =  U. J
8483elcls2 17130 . . . 4  |-  ( ( J  e.  Top  /\  { ( G  gsumg  F ) }  C_  U. J )  ->  (
x  e.  ( ( cls `  J ) `
 { ( G 
gsumg  F ) } )  <-> 
( x  e.  U. J  /\  A. u  e.  J  ( x  e.  u  ->  ( u  i^i  { ( G  gsumg  F ) } )  =/=  (/) ) ) ) )
8579, 82, 84syl2anc 643 . . 3  |-  ( ph  ->  ( x  e.  ( ( cls `  J
) `  { ( G  gsumg  F ) } )  <-> 
( x  e.  U. J  /\  A. u  e.  J  ( x  e.  u  ->  ( u  i^i  { ( G  gsumg  F ) } )  =/=  (/) ) ) ) )
8675, 77, 853bitr4d 277 . 2  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  x  e.  ( ( cls `  J
) `  { ( G  gsumg  F ) } ) ) )
8786eqrdv 2433 1  |-  ( ph  ->  ( G tsums  F )  =  ( ( cls `  J ) `  {
( G  gsumg  F ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    \ cdif 3309    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   {csn 3806   U.cuni 4007   `'ccnv 4869   dom cdm 4870    |` cres 4872   "cima 4873   -->wf 5442   ` cfv 5446  (class class class)co 6073   Fincfn 7101   Basecbs 13461   TopOpenctopn 13641   0gc0g 13715    gsumg cgsu 13716  CMndccmn 15404   Topctop 16950  TopOnctopon 16951   TopSpctps 16953   clsccl 17074   tsums ctsu 18147
This theorem is referenced by:  tsmsid  18161  tgptsmscls  18171
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-fz 11036  df-fzo 11128  df-seq 11316  df-hash 11611  df-0g 13719  df-gsum 13720  df-mnd 14682  df-cntz 15108  df-cmn 15406  df-fbas 16691  df-fg 16692  df-top 16955  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-tsms 18148
  Copyright terms: Public domain W3C validator