MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmslem1 Structured version   Unicode version

Theorem tsmslem1 18163
Description: The finite partial sums of a function  F are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmslem1.b  |-  B  =  ( Base `  G
)
tsmslem1.s  |-  S  =  ( ~P A  i^i  Fin )
tsmslem1.1  |-  ( ph  ->  G  e. CMnd )
tsmslem1.a  |-  ( ph  ->  A  e.  W )
tsmslem1.f  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
tsmslem1  |-  ( (
ph  /\  X  e.  S )  ->  ( G  gsumg  ( F  |`  X ) )  e.  B )

Proof of Theorem tsmslem1
StepHypRef Expression
1 tsmslem1.b . 2  |-  B  =  ( Base `  G
)
2 eqid 2438 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 tsmslem1.1 . . 3  |-  ( ph  ->  G  e. CMnd )
43adantr 453 . 2  |-  ( (
ph  /\  X  e.  S )  ->  G  e. CMnd )
5 simpr 449 . 2  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  S )
6 tsmslem1.f . . . 4  |-  ( ph  ->  F : A --> B )
76adantr 453 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  F : A --> B )
8 tsmslem1.s . . . . 5  |-  S  =  ( ~P A  i^i  Fin )
95, 8syl6eleq 2528 . . . 4  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  ( ~P A  i^i  Fin ) )
10 elfpw 7411 . . . . 5  |-  ( X  e.  ( ~P A  i^i  Fin )  <->  ( X  C_  A  /\  X  e. 
Fin ) )
1110simplbi 448 . . . 4  |-  ( X  e.  ( ~P A  i^i  Fin )  ->  X  C_  A )
129, 11syl 16 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  C_  A )
13 fssres 5613 . . 3  |-  ( ( F : A --> B  /\  X  C_  A )  -> 
( F  |`  X ) : X --> B )
147, 12, 13syl2anc 644 . 2  |-  ( (
ph  /\  X  e.  S )  ->  ( F  |`  X ) : X --> B )
1510simprbi 452 . . . 4  |-  ( X  e.  ( ~P A  i^i  Fin )  ->  X  e.  Fin )
169, 15syl 16 . . 3  |-  ( (
ph  /\  X  e.  S )  ->  X  e.  Fin )
1716, 14fisuppfi 14778 . 2  |-  ( (
ph  /\  X  e.  S )  ->  ( `' ( F  |`  X ) " ( _V  \  { ( 0g
`  G ) } ) )  e.  Fin )
181, 2, 4, 5, 14, 17gsumcl 15526 1  |-  ( (
ph  /\  X  e.  S )  ->  ( G  gsumg  ( F  |`  X ) )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   {csn 3816    |` cres 4883   -->wf 5453   ` cfv 5457  (class class class)co 6084   Fincfn 7112   Basecbs 13474   0gc0g 13728    gsumg cgsu 13729  CMndccmn 15417
This theorem is referenced by:  eltsms  18167  haustsms  18170  tsmscls  18172  tsmsmhm  18180  tsmsadd  18181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-fzo 11141  df-seq 11329  df-hash 11624  df-0g 13732  df-gsum 13733  df-mnd 14695  df-cntz 15121  df-cmn 15419
  Copyright terms: Public domain W3C validator