MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssubm Unicode version

Theorem tsmssubm 18093
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmssubm.a  |-  ( ph  ->  A  e.  V )
tsmssubm.1  |-  ( ph  ->  G  e. CMnd )
tsmssubm.2  |-  ( ph  ->  G  e.  TopSp )
tsmssubm.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
tsmssubm.f  |-  ( ph  ->  F : A --> S )
tsmssubm.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
tsmssubm  |-  ( ph  ->  ( H tsums  F )  =  ( ( G tsums 
F )  i^i  S
) )

Proof of Theorem tsmssubm
Dummy variables  v  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssubm.s . . . . . 6  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
2 tsmssubm.h . . . . . . 7  |-  H  =  ( Gs  S )
32submbas 14682 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
41, 3syl 16 . . . . 5  |-  ( ph  ->  S  =  ( Base `  H ) )
54eleq2d 2454 . . . 4  |-  ( ph  ->  ( x  e.  S  <->  x  e.  ( Base `  H
) ) )
65anbi1d 686 . . 3  |-  ( ph  ->  ( ( x  e.  S  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) )  <-> 
( x  e.  (
Base `  H )  /\  A. v  e.  (
TopOpen `  H ) ( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( H  gsumg  ( F  |`  y
) )  e.  v ) ) ) ) )
7 elin 3473 . . . . 5  |-  ( x  e.  ( ( G tsums 
F )  i^i  S
)  <->  ( x  e.  ( G tsums  F )  /\  x  e.  S
) )
8 ancom 438 . . . . 5  |-  ( ( x  e.  ( G tsums 
F )  /\  x  e.  S )  <->  ( x  e.  S  /\  x  e.  ( G tsums  F ) ) )
97, 8bitri 241 . . . 4  |-  ( x  e.  ( ( G tsums 
F )  i^i  S
)  <->  ( x  e.  S  /\  x  e.  ( G tsums  F ) ) )
10 eqid 2387 . . . . . . . . . 10  |-  ( Base `  G )  =  (
Base `  G )
1110submss 14677 . . . . . . . . 9  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
121, 11syl 16 . . . . . . . 8  |-  ( ph  ->  S  C_  ( Base `  G ) )
1312sselda 3291 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  ( Base `  G
) )
14 eqid 2387 . . . . . . . . 9  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
15 eqid 2387 . . . . . . . . 9  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
16 tsmssubm.1 . . . . . . . . 9  |-  ( ph  ->  G  e. CMnd )
17 tsmssubm.2 . . . . . . . . 9  |-  ( ph  ->  G  e.  TopSp )
18 tsmssubm.a . . . . . . . . 9  |-  ( ph  ->  A  e.  V )
19 tsmssubm.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> S )
20 fss 5539 . . . . . . . . . 10  |-  ( ( F : A --> S  /\  S  C_  ( Base `  G
) )  ->  F : A --> ( Base `  G
) )
2119, 12, 20syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  F : A --> ( Base `  G ) )
2210, 14, 15, 16, 17, 18, 21eltsms 18083 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  ( Base `  G
)  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) ) )
2322baibd 876 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  ( x  e.  ( G tsums  F )  <->  A. u  e.  ( TopOpen
`  G ) ( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
) ) ) )
2413, 23syldan 457 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( G tsums 
F )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
25 vex 2902 . . . . . . . . 9  |-  u  e. 
_V
2625inex1 4285 . . . . . . . 8  |-  ( u  i^i  S )  e. 
_V
2726a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  S )  /\  u  e.  ( TopOpen `  G )
)  ->  ( u  i^i  S )  e.  _V )
282, 14resstopn 17172 . . . . . . . . 9  |-  ( (
TopOpen `  G )t  S )  =  ( TopOpen `  H
)
2928eleq2i 2451 . . . . . . . 8  |-  ( v  e.  ( ( TopOpen `  G )t  S )  <->  v  e.  ( TopOpen `  H )
)
30 fvex 5682 . . . . . . . . . 10  |-  ( TopOpen `  G )  e.  _V
31 elrest 13582 . . . . . . . . . 10  |-  ( ( ( TopOpen `  G )  e.  _V  /\  S  e.  (SubMnd `  G )
)  ->  ( v  e.  ( ( TopOpen `  G
)t 
S )  <->  E. u  e.  ( TopOpen `  G )
v  =  ( u  i^i  S ) ) )
3230, 1, 31sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  ( ( TopOpen `  G )t  S
)  <->  E. u  e.  (
TopOpen `  G ) v  =  ( u  i^i 
S ) ) )
3332adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
v  e.  ( (
TopOpen `  G )t  S )  <->  E. u  e.  ( TopOpen
`  G ) v  =  ( u  i^i 
S ) ) )
3429, 33syl5bbr 251 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  (
v  e.  ( TopOpen `  H )  <->  E. u  e.  ( TopOpen `  G )
v  =  ( u  i^i  S ) ) )
35 eleq2 2448 . . . . . . . . 9  |-  ( v  =  ( u  i^i 
S )  ->  (
x  e.  v  <->  x  e.  ( u  i^i  S ) ) )
36 elin 3473 . . . . . . . . . . 11  |-  ( x  e.  ( u  i^i 
S )  <->  ( x  e.  u  /\  x  e.  S ) )
3736rbaib 874 . . . . . . . . . 10  |-  ( x  e.  S  ->  (
x  e.  ( u  i^i  S )  <->  x  e.  u ) )
3837adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( u  i^i  S )  <->  x  e.  u ) )
3935, 38sylan9bbr 682 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( x  e.  v  <-> 
x  e.  u ) )
40 eleq2 2448 . . . . . . . . . . . . 13  |-  ( v  =  ( u  i^i 
S )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  v  <-> 
( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S ) ) )
41 eqid 2387 . . . . . . . . . . . . . . . . 17  |-  ( Base `  H )  =  (
Base `  H )
42 eqid 2387 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  H )  =  ( 0g `  H
)
432submmnd 14681 . . . . . . . . . . . . . . . . . . . 20  |-  ( S  e.  (SubMnd `  G
)  ->  H  e.  Mnd )
441, 43syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  H  e.  Mnd )
452subcmn 15383 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e. CMnd  /\  H  e.  Mnd )  ->  H  e. CMnd )
4616, 44, 45syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  H  e. CMnd )
4746ad2antrr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  H  e. CMnd )
48 elfpw 7343 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
4948simprbi 451 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
5049adantl 453 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
5119ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  F : A --> S )
5248simplbi 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
5352adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  C_  A )
54 fssres 5550 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> S  /\  y  C_  A )  -> 
( F  |`  y
) : y --> S )
5551, 53, 54syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  y ) : y --> S )
564ad2antrr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  S  =  ( Base `  H
) )
57 feq3 5518 . . . . . . . . . . . . . . . . . . 19  |-  ( S  =  ( Base `  H
)  ->  ( ( F  |`  y ) : y --> S  <->  ( F  |`  y ) : y --> ( Base `  H
) ) )
5856, 57syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( F  |`  y
) : y --> S  <-> 
( F  |`  y
) : y --> (
Base `  H )
) )
5955, 58mpbid 202 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  y ) : y --> ( Base `  H
) )
6050, 55fisuppfi 14700 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( F  |`  y ) " ( _V  \  { ( 0g
`  H ) } ) )  e.  Fin )
6141, 42, 47, 50, 59, 60gsumcl 15448 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( H  gsumg  ( F  |`  y
) )  e.  (
Base `  H )
)
6261, 56eleqtrrd 2464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( H  gsumg  ( F  |`  y
) )  e.  S
)
63 elin 3473 . . . . . . . . . . . . . . . 16  |-  ( ( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S )  <-> 
( ( H  gsumg  ( F  |`  y ) )  e.  u  /\  ( H 
gsumg  ( F  |`  y ) )  e.  S ) )
6463rbaib 874 . . . . . . . . . . . . . . 15  |-  ( ( H  gsumg  ( F  |`  y
) )  e.  S  ->  ( ( H  gsumg  ( F  |`  y ) )  e.  ( u  i^i  S
)  <->  ( H  gsumg  ( F  |`  y ) )  e.  u ) )
6562, 64syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S )  <-> 
( H  gsumg  ( F  |`  y
) )  e.  u
) )
661ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  S  e.  (SubMnd `  G )
)
6750, 66, 55, 2gsumsubm 14705 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  y
) )  =  ( H  gsumg  ( F  |`  y
) ) )
6867eleq1d 2453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  u  <->  ( H  gsumg  ( F  |`  y
) )  e.  u
) )
6965, 68bitr4d 248 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S )  <-> 
( G  gsumg  ( F  |`  y
) )  e.  u
) )
7040, 69sylan9bbr 682 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin )
)  /\  v  =  ( u  i^i  S ) )  ->  ( ( H  gsumg  ( F  |`  y
) )  e.  v  <-> 
( G  gsumg  ( F  |`  y
) )  e.  u
) )
7170an32s 780 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  S )  /\  v  =  (
u  i^i  S )
)  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  v  <-> 
( G  gsumg  ( F  |`  y
) )  e.  u
) )
7271imbi2d 308 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  S )  /\  v  =  (
u  i^i  S )
)  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( z  C_  y  ->  ( H  gsumg  ( F  |`  y
) )  e.  v )  <->  ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) )
7372ralbidva 2665 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v )  <->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) )
7473rexbidv 2670 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v )  <->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) )
7539, 74imbi12d 312 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( ( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) )  <->  ( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
7627, 34, 75ralxfr2d 4679 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  ( A. v  e.  ( TopOpen
`  H ) ( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( H  gsumg  ( F  |`  y
) )  e.  v ) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
7724, 76bitr4d 248 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( G tsums 
F )  <->  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) )
7877pm5.32da 623 . . . 4  |-  ( ph  ->  ( ( x  e.  S  /\  x  e.  ( G tsums  F ) )  <->  ( x  e.  S  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) ) )
799, 78syl5bb 249 . . 3  |-  ( ph  ->  ( x  e.  ( ( G tsums  F )  i^i  S )  <->  ( x  e.  S  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) ) )
80 eqid 2387 . . . 4  |-  ( TopOpen `  H )  =  (
TopOpen `  H )
81 resstps 17173 . . . . . 6  |-  ( ( G  e.  TopSp  /\  S  e.  (SubMnd `  G )
)  ->  ( Gs  S
)  e.  TopSp )
8217, 1, 81syl2anc 643 . . . . 5  |-  ( ph  ->  ( Gs  S )  e.  TopSp )
832, 82syl5eqel 2471 . . . 4  |-  ( ph  ->  H  e.  TopSp )
84 feq3 5518 . . . . . 6  |-  ( S  =  ( Base `  H
)  ->  ( F : A --> S  <->  F : A
--> ( Base `  H
) ) )
854, 84syl 16 . . . . 5  |-  ( ph  ->  ( F : A --> S 
<->  F : A --> ( Base `  H ) ) )
8619, 85mpbid 202 . . . 4  |-  ( ph  ->  F : A --> ( Base `  H ) )
8741, 80, 15, 46, 83, 18, 86eltsms 18083 . . 3  |-  ( ph  ->  ( x  e.  ( H tsums  F )  <->  ( x  e.  ( Base `  H
)  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) ) )
886, 79, 873bitr4rd 278 . 2  |-  ( ph  ->  ( x  e.  ( H tsums  F )  <->  x  e.  ( ( G tsums  F
)  i^i  S )
) )
8988eqrdv 2385 1  |-  ( ph  ->  ( H tsums  F )  =  ( ( G tsums 
F )  i^i  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2649   E.wrex 2650   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   ~Pcpw 3742   {csn 3757    |` cres 4820   -->wf 5390   ` cfv 5394  (class class class)co 6020   Fincfn 7045   Basecbs 13396   ↾s cress 13397   ↾t crest 13575   TopOpenctopn 13576   0gc0g 13650    gsumg cgsu 13651   Mndcmnd 14611  SubMndcsubmnd 14664  CMndccmn 15339   TopSpctps 16884   tsums ctsu 18076
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-n0 10154  df-z 10215  df-uz 10421  df-fz 10976  df-fzo 11066  df-seq 11251  df-hash 11546  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-tset 13475  df-rest 13577  df-topn 13578  df-topgen 13594  df-0g 13654  df-gsum 13655  df-mnd 14617  df-submnd 14666  df-cntz 15043  df-cmn 15341  df-fbas 16623  df-fg 16624  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-ntr 17007  df-nei 17085  df-fil 17799  df-fm 17891  df-flim 17892  df-flf 17893  df-tsms 18077
  Copyright terms: Public domain W3C validator