MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsrss Unicode version

Theorem tsrss 14332
Description: Any subset of a totally ordered set is totally ordered. (Contributed by FL, 24-Jan-2010.) (Proof shortened by Mario Carneiro, 21-Nov-2013.)
Assertion
Ref Expression
tsrss  |-  ( R  e.  TosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  TosetRel  )

Proof of Theorem tsrss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psss 14323 . . 3  |-  ( R  e.  PosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  PosetRel )
2 inss1 3389 . . . . . 6  |-  ( R  i^i  ( A  X.  A ) )  C_  R
3 dmss 4878 . . . . . 6  |-  ( ( R  i^i  ( A  X.  A ) ) 
C_  R  ->  dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  R )
4 ssralv 3237 . . . . . 6  |-  ( dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  R  ->  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A
) ) A. y  e.  dom  R ( x R y  \/  y R x ) ) )
52, 3, 4mp2b 9 . . . . 5  |-  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  R ( x R y  \/  y R x ) )
6 ssralv 3237 . . . . . . 7  |-  ( dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  R  ->  ( A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. y  e.  dom  ( R  i^i  ( A  X.  A
) ) ( x R y  \/  y R x ) ) )
72, 3, 6mp2b 9 . . . . . 6  |-  ( A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x ) )
87ralimi 2618 . . . . 5  |-  ( A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x ) )
95, 8syl 15 . . . 4  |-  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x ) )
10 inss2 3390 . . . . . . . . . 10  |-  ( R  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
11 dmss 4878 . . . . . . . . . 10  |-  ( ( R  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  dom  ( R  i^i  ( A  X.  A ) ) 
C_  dom  ( A  X.  A ) )
1210, 11ax-mp 8 . . . . . . . . 9  |-  dom  ( R  i^i  ( A  X.  A ) )  C_  dom  ( A  X.  A
)
13 dmxpid 4898 . . . . . . . . 9  |-  dom  ( A  X.  A )  =  A
1412, 13sseqtri 3210 . . . . . . . 8  |-  dom  ( R  i^i  ( A  X.  A ) )  C_  A
1514sseli 3176 . . . . . . 7  |-  ( x  e.  dom  ( R  i^i  ( A  X.  A ) )  ->  x  e.  A )
1614sseli 3176 . . . . . . 7  |-  ( y  e.  dom  ( R  i^i  ( A  X.  A ) )  -> 
y  e.  A )
17 brinxp 4752 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <-> 
x ( R  i^i  ( A  X.  A
) ) y ) )
18 brinxp 4752 . . . . . . . . 9  |-  ( ( y  e.  A  /\  x  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
1918ancoms 439 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( y R x  <-> 
y ( R  i^i  ( A  X.  A
) ) x ) )
2017, 19orbi12d 690 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( x R y  \/  y R x )  <->  ( x
( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
2115, 16, 20syl2an 463 . . . . . 6  |-  ( ( x  e.  dom  ( R  i^i  ( A  X.  A ) )  /\  y  e.  dom  ( R  i^i  ( A  X.  A ) ) )  ->  ( ( x R y  \/  y R x )  <->  ( x
( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
2221ralbidva 2559 . . . . 5  |-  ( x  e.  dom  ( R  i^i  ( A  X.  A ) )  -> 
( A. y  e. 
dom  ( R  i^i  ( A  X.  A
) ) ( x R y  \/  y R x )  <->  A. y  e.  dom  ( R  i^i  ( A  X.  A
) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
2322ralbiia 2575 . . . 4  |-  ( A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x R y  \/  y R x )  <->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) )
249, 23sylib 188 . . 3  |-  ( A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x )  ->  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) )
251, 24anim12i 549 . 2  |-  ( ( R  e.  PosetRel  /\  A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x ) )  ->  ( ( R  i^i  ( A  X.  A ) )  e.  PosetRel 
/\  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A ) ) y  \/  y ( R  i^i  ( A  X.  A ) ) x ) ) )
26 eqid 2283 . . 3  |-  dom  R  =  dom  R
2726istsr2 14327 . 2  |-  ( R  e.  TosetRel 
<->  ( R  e.  PosetRel  /\  A. x  e.  dom  R A. y  e.  dom  R ( x R y  \/  y R x ) ) )
28 eqid 2283 . . 3  |-  dom  ( R  i^i  ( A  X.  A ) )  =  dom  ( R  i^i  ( A  X.  A
) )
2928istsr2 14327 . 2  |-  ( ( R  i^i  ( A  X.  A ) )  e.  TosetRel 
<->  ( ( R  i^i  ( A  X.  A
) )  e.  PosetRel  /\  A. x  e.  dom  ( R  i^i  ( A  X.  A ) ) A. y  e.  dom  ( R  i^i  ( A  X.  A ) ) ( x ( R  i^i  ( A  X.  A
) ) y  \/  y ( R  i^i  ( A  X.  A
) ) x ) ) )
3025, 27, 293imtr4i 257 1  |-  ( R  e.  TosetRel  ->  ( R  i^i  ( A  X.  A
) )  e.  TosetRel  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    e. wcel 1684   A.wral 2543    i^i cin 3151    C_ wss 3152   class class class wbr 4023    X. cxp 4687   dom cdm 4689   PosetRelcps 14301    TosetRel ctsr 14302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ps 14306  df-tsr 14307
  Copyright terms: Public domain W3C validator