Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttac Unicode version

Theorem ttac 27232
Description: Tarski's theorem about choice: infxpidm 8200 is equivalent to ax-ac 8101. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
ttac  |-  (CHOICE  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)

Proof of Theorem ttac
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dfac10 7779 . 2  |-  (CHOICE  <->  dom  card  =  _V )
2 vex 2804 . . . . . 6  |-  c  e. 
_V
3 eleq2 2357 . . . . . 6  |-  ( dom 
card  =  _V  ->  ( c  e.  dom  card  <->  c  e.  _V ) )
42, 3mpbiri 224 . . . . 5  |-  ( dom 
card  =  _V  ->  c  e.  dom  card )
5 infxpidm2 7660 . . . . . 6  |-  ( ( c  e.  dom  card  /\ 
om  ~<_  c )  -> 
( c  X.  c
)  ~~  c )
65ex 423 . . . . 5  |-  ( c  e.  dom  card  ->  ( om  ~<_  c  ->  (
c  X.  c ) 
~~  c ) )
74, 6syl 15 . . . 4  |-  ( dom 
card  =  _V  ->  ( om  ~<_  c  ->  (
c  X.  c ) 
~~  c ) )
87alrimiv 1621 . . 3  |-  ( dom 
card  =  _V  ->  A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
9 finnum 7597 . . . . . . 7  |-  ( a  e.  Fin  ->  a  e.  dom  card )
109adantl 452 . . . . . 6  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  a  e.  Fin )  ->  a  e. 
dom  card )
11 harcl 7291 . . . . . . . . 9  |-  (har `  a )  e.  On
12 onenon 7598 . . . . . . . . 9  |-  ( (har
`  a )  e.  On  ->  (har `  a
)  e.  dom  card )
1311, 12ax-mp 8 . . . . . . . 8  |-  (har `  a )  e.  dom  card
14 fvex 5555 . . . . . . . . . . . . . 14  |-  (har `  a )  e.  _V
15 vex 2804 . . . . . . . . . . . . . 14  |-  a  e. 
_V
1614, 15unex 4534 . . . . . . . . . . . . 13  |-  ( (har
`  a )  u.  a )  e.  _V
17 harinf 27230 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  _V  /\  -.  a  e.  Fin )  ->  om  C_  (har `  a ) )
1815, 17mpan 651 . . . . . . . . . . . . . 14  |-  ( -.  a  e.  Fin  ->  om  C_  (har `  a )
)
19 ssun1 3351 . . . . . . . . . . . . . 14  |-  (har `  a )  C_  (
(har `  a )  u.  a )
2018, 19syl6ss 3204 . . . . . . . . . . . . 13  |-  ( -.  a  e.  Fin  ->  om  C_  ( (har `  a
)  u.  a ) )
21 ssdomg 6923 . . . . . . . . . . . . 13  |-  ( ( (har `  a )  u.  a )  e.  _V  ->  ( om  C_  (
(har `  a )  u.  a )  ->  om  ~<_  ( (har
`  a )  u.  a ) ) )
2216, 20, 21mpsyl 59 . . . . . . . . . . . 12  |-  ( -.  a  e.  Fin  ->  om  ~<_  ( (har `  a
)  u.  a ) )
23 breq2 4043 . . . . . . . . . . . . . 14  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( om  ~<_  c 
<->  om  ~<_  ( (har `  a )  u.  a
) ) )
24 xpeq12 4724 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  ( (har
`  a )  u.  a )  /\  c  =  ( (har `  a )  u.  a
) )  ->  (
c  X.  c )  =  ( ( (har
`  a )  u.  a )  X.  (
(har `  a )  u.  a ) ) )
2524anidms 626 . . . . . . . . . . . . . . 15  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( c  X.  c )  =  ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) ) )
26 id 19 . . . . . . . . . . . . . . 15  |-  ( c  =  ( (har `  a )  u.  a
)  ->  c  =  ( (har `  a )  u.  a ) )
2725, 26breq12d 4052 . . . . . . . . . . . . . 14  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( (
c  X.  c ) 
~~  c  <->  ( (
(har `  a )  u.  a )  X.  (
(har `  a )  u.  a ) )  ~~  ( (har `  a )  u.  a ) ) )
2823, 27imbi12d 311 . . . . . . . . . . . . 13  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( ( om 
~<_  c  ->  ( c  X.  c )  ~~  c )  <->  ( om  ~<_  ( (har `  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) ) ) )
2916, 28spcv 2887 . . . . . . . . . . . 12  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  ( om  ~<_  ( (har
`  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) ) )
3022, 29syl5 28 . . . . . . . . . . 11  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  ( -.  a  e. 
Fin  ->  ( ( (har
`  a )  u.  a )  X.  (
(har `  a )  u.  a ) )  ~~  ( (har `  a )  u.  a ) ) )
3130imp 418 . . . . . . . . . 10  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) )
32 harndom 7294 . . . . . . . . . . . 12  |-  -.  (har `  a )  ~<_  a
33 ssdomg 6923 . . . . . . . . . . . . . 14  |-  ( ( (har `  a )  u.  a )  e.  _V  ->  ( (har `  a
)  C_  ( (har `  a )  u.  a
)  ->  (har `  a
)  ~<_  ( (har `  a )  u.  a
) ) )
3416, 19, 33mp2 17 . . . . . . . . . . . . 13  |-  (har `  a )  ~<_  ( (har
`  a )  u.  a )
35 domtr 6930 . . . . . . . . . . . . 13  |-  ( ( (har `  a )  ~<_  ( (har `  a )  u.  a )  /\  (
(har `  a )  u.  a )  ~<_  a )  ->  (har `  a
)  ~<_  a )
3634, 35mpan 651 . . . . . . . . . . . 12  |-  ( ( (har `  a )  u.  a )  ~<_  a  -> 
(har `  a )  ~<_  a )
3732, 36mto 167 . . . . . . . . . . 11  |-  -.  (
(har `  a )  u.  a )  ~<_  a
38 unxpwdom2 7318 . . . . . . . . . . 11  |-  ( ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  ~<_*  (har `  a )  \/  ( (har `  a
)  u.  a )  ~<_  a ) )
39 orel2 372 . . . . . . . . . . 11  |-  ( -.  ( (har `  a
)  u.  a )  ~<_  a  ->  ( (
( (har `  a
)  u.  a )  ~<_*  (har `  a )  \/  ( (har `  a
)  u.  a )  ~<_  a )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
) )
4037, 38, 39mpsyl 59 . . . . . . . . . 10  |-  ( ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
)
4131, 40syl 15 . . . . . . . . 9  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
)
42 wdomnumr 7707 . . . . . . . . . 10  |-  ( (har
`  a )  e. 
dom  card  ->  ( (
(har `  a )  u.  a )  ~<_*  (har `  a )  <->  ( (har `  a )  u.  a )  ~<_  (har `  a ) ) )
4313, 42ax-mp 8 . . . . . . . . 9  |-  ( ( (har `  a )  u.  a )  ~<_*  (har `  a )  <->  ( (har `  a )  u.  a )  ~<_  (har `  a ) )
4441, 43sylib 188 . . . . . . . 8  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  ~<_  (har `  a ) )
45 numdom 7681 . . . . . . . 8  |-  ( ( (har `  a )  e.  dom  card  /\  (
(har `  a )  u.  a )  ~<_  (har `  a ) )  -> 
( (har `  a
)  u.  a )  e.  dom  card )
4613, 44, 45sylancr 644 . . . . . . 7  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  e.  dom  card )
47 ssun2 3352 . . . . . . 7  |-  a  C_  ( (har `  a )  u.  a )
48 ssnum 7682 . . . . . . 7  |-  ( ( ( (har `  a
)  u.  a )  e.  dom  card  /\  a  C_  ( (har `  a
)  u.  a ) )  ->  a  e.  dom  card )
4946, 47, 48sylancl 643 . . . . . 6  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  a  e.  dom  card )
5010, 49pm2.61dan 766 . . . . 5  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  a  e.  dom  card )
5150alrimiv 1621 . . . 4  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  A. a  a  e. 
dom  card )
52 eqv 3483 . . . 4  |-  ( dom 
card  =  _V  <->  A. a 
a  e.  dom  card )
5351, 52sylibr 203 . . 3  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  dom  card  =  _V )
548, 53impbii 180 . 2  |-  ( dom 
card  =  _V  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
551, 54bitri 240 1  |-  (CHOICE  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163    C_ wss 3165   class class class wbr 4039   Oncon0 4408   omcom 4672    X. cxp 4703   dom cdm 4705   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877   Fincfn 6879  harchar 7286    ~<_* cwdom 7287   cardccrd 7584  CHOICEwac 7758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-har 7288  df-wdom 7289  df-card 7588  df-acn 7591  df-ac 7759
  Copyright terms: Public domain W3C validator