MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukey2g Structured version   Unicode version

Theorem ttukey2g 8396
Description: The Teichmüller-Tukey Lemma ttukey 8398 with a slightly stronger conclusion: we can set up the maximal element of  A so that it also contains some given  B  e.  A as a subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
ttukey2g  |-  ( ( U. A  e.  dom  card  /\  B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) )
Distinct variable groups:    x, y, A    x, B, y

Proof of Theorem ttukey2g
Dummy variables  w  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3474 . . . 4  |-  ( U. A  \  B )  C_  U. A
2 ssnum 7920 . . . 4  |-  ( ( U. A  e.  dom  card  /\  ( U. A  \  B )  C_  U. A
)  ->  ( U. A  \  B )  e. 
dom  card )
31, 2mpan2 653 . . 3  |-  ( U. A  e.  dom  card  ->  ( U. A  \  B
)  e.  dom  card )
4 isnum3 7841 . . . . 5  |-  ( ( U. A  \  B
)  e.  dom  card  <->  ( card `  ( U. A  \  B ) )  ~~  ( U. A  \  B
) )
5 bren 7117 . . . . 5  |-  ( (
card `  ( U. A  \  B ) ) 
~~  ( U. A  \  B )  <->  E. f 
f : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
64, 5bitri 241 . . . 4  |-  ( ( U. A  \  B
)  e.  dom  card  <->  E. f  f : (
card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B
) )
7 simp1 957 . . . . . . 7  |-  ( ( f : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  /\  B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A
) )  ->  f : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
8 simp2 958 . . . . . . 7  |-  ( ( f : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  /\  B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A
) )  ->  B  e.  A )
9 simp3 959 . . . . . . 7  |-  ( ( f : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  /\  B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A
) )  ->  A. x
( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
10 dmeq 5070 . . . . . . . . . . 11  |-  ( w  =  z  ->  dom  w  =  dom  z )
1110unieqd 4026 . . . . . . . . . . 11  |-  ( w  =  z  ->  U. dom  w  =  U. dom  z
)
1210, 11eqeq12d 2450 . . . . . . . . . 10  |-  ( w  =  z  ->  ( dom  w  =  U. dom  w 
<->  dom  z  =  U. dom  z ) )
1310eqeq1d 2444 . . . . . . . . . . 11  |-  ( w  =  z  ->  ( dom  w  =  (/)  <->  dom  z  =  (/) ) )
14 rneq 5095 . . . . . . . . . . . 12  |-  ( w  =  z  ->  ran  w  =  ran  z )
1514unieqd 4026 . . . . . . . . . . 11  |-  ( w  =  z  ->  U. ran  w  =  U. ran  z
)
1613, 15ifbieq2d 3759 . . . . . . . . . 10  |-  ( w  =  z  ->  if ( dom  w  =  (/) ,  B ,  U. ran  w )  =  if ( dom  z  =  (/) ,  B ,  U. ran  z ) )
17 id 20 . . . . . . . . . . . 12  |-  ( w  =  z  ->  w  =  z )
1817, 11fveq12d 5734 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
w `  U. dom  w
)  =  ( z `
 U. dom  z
) )
1911fveq2d 5732 . . . . . . . . . . . . . . 15  |-  ( w  =  z  ->  (
f `  U. dom  w
)  =  ( f `
 U. dom  z
) )
2019sneqd 3827 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  { ( f `  U. dom  w ) }  =  { ( f `  U. dom  z ) } )
2118, 20uneq12d 3502 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
( w `  U. dom  w )  u.  {
( f `  U. dom  w ) } )  =  ( ( z `
 U. dom  z
)  u.  { ( f `  U. dom  z ) } ) )
2221eleq1d 2502 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
( ( w `  U. dom  w )  u. 
{ ( f `  U. dom  w ) } )  e.  A  <->  ( (
z `  U. dom  z
)  u.  { ( f `  U. dom  z ) } )  e.  A ) )
23 eqidd 2437 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (/)  =  (/) )
2422, 20, 23ifbieq12d 3761 . . . . . . . . . . 11  |-  ( w  =  z  ->  if ( ( ( w `
 U. dom  w
)  u.  { ( f `  U. dom  w ) } )  e.  A ,  {
( f `  U. dom  w ) } ,  (/) )  =  if ( ( ( z `  U. dom  z )  u. 
{ ( f `  U. dom  z ) } )  e.  A ,  { ( f `  U. dom  z ) } ,  (/) ) )
2518, 24uneq12d 3502 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( w `  U. dom  w )  u.  if ( ( ( w `
 U. dom  w
)  u.  { ( f `  U. dom  w ) } )  e.  A ,  {
( f `  U. dom  w ) } ,  (/) ) )  =  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( f `  U. dom  z ) } )  e.  A ,  {
( f `  U. dom  z ) } ,  (/) ) ) )
2612, 16, 25ifbieq12d 3761 . . . . . . . . 9  |-  ( w  =  z  ->  if ( dom  w  =  U. dom  w ,  if ( dom  w  =  (/) ,  B ,  U. ran  w ) ,  ( ( w `  U. dom  w )  u.  if ( ( ( w `
 U. dom  w
)  u.  { ( f `  U. dom  w ) } )  e.  A ,  {
( f `  U. dom  w ) } ,  (/) ) ) )  =  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `  U. dom  z )  u.  {
( f `  U. dom  z ) } )  e.  A ,  {
( f `  U. dom  z ) } ,  (/) ) ) ) )
2726cbvmptv 4300 . . . . . . . 8  |-  ( w  e.  _V  |->  if ( dom  w  =  U. dom  w ,  if ( dom  w  =  (/) ,  B ,  U. ran  w ) ,  ( ( w `  U. dom  w )  u.  if ( ( ( w `
 U. dom  w
)  u.  { ( f `  U. dom  w ) } )  e.  A ,  {
( f `  U. dom  w ) } ,  (/) ) ) ) )  =  ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( f `  U. dom  z ) } )  e.  A ,  { ( f `  U. dom  z ) } ,  (/) ) ) ) )
28 recseq 6634 . . . . . . . 8  |-  ( ( w  e.  _V  |->  if ( dom  w  = 
U. dom  w ,  if ( dom  w  =  (/) ,  B ,  U. ran  w ) ,  ( ( w `  U. dom  w )  u.  if ( ( ( w `
 U. dom  w
)  u.  { ( f `  U. dom  w ) } )  e.  A ,  {
( f `  U. dom  w ) } ,  (/) ) ) ) )  =  ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( f `  U. dom  z ) } )  e.  A ,  { ( f `  U. dom  z ) } ,  (/) ) ) ) )  -> recs ( (
w  e.  _V  |->  if ( dom  w  = 
U. dom  w ,  if ( dom  w  =  (/) ,  B ,  U. ran  w ) ,  ( ( w `  U. dom  w )  u.  if ( ( ( w `
 U. dom  w
)  u.  { ( f `  U. dom  w ) } )  e.  A ,  {
( f `  U. dom  w ) } ,  (/) ) ) ) ) )  = recs ( ( z  e.  _V  |->  if ( dom  z  = 
U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( f `  U. dom  z ) } )  e.  A ,  {
( f `  U. dom  z ) } ,  (/) ) ) ) ) ) )
2927, 28ax-mp 8 . . . . . . 7  |- recs ( ( w  e.  _V  |->  if ( dom  w  = 
U. dom  w ,  if ( dom  w  =  (/) ,  B ,  U. ran  w ) ,  ( ( w `  U. dom  w )  u.  if ( ( ( w `
 U. dom  w
)  u.  { ( f `  U. dom  w ) } )  e.  A ,  {
( f `  U. dom  w ) } ,  (/) ) ) ) ) )  = recs ( ( z  e.  _V  |->  if ( dom  z  = 
U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( f `  U. dom  z ) } )  e.  A ,  {
( f `  U. dom  z ) } ,  (/) ) ) ) ) )
307, 8, 9, 29ttukeylem7 8395 . . . . . 6  |-  ( ( f : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  /\  B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A
) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) )
31303expib 1156 . . . . 5  |-  ( f : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B )  ->  (
( B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) ) )
3231exlimiv 1644 . . . 4  |-  ( E. f  f : (
card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B
)  ->  ( ( B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A
) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) ) )
336, 32sylbi 188 . . 3  |-  ( ( U. A  \  B
)  e.  dom  card  -> 
( ( B  e.  A  /\  A. x
( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) ) )
343, 33syl 16 . 2  |-  ( U. A  e.  dom  card  ->  ( ( B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) ) )
35343impib 1151 1  |-  ( ( U. A  e.  dom  card  /\  B  e.  A  /\  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )  ->  E. x  e.  A  ( B  C_  x  /\  A. y  e.  A  -.  x  C.  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   _Vcvv 2956    \ cdif 3317    u. cun 3318    i^i cin 3319    C_ wss 3320    C. wpss 3321   (/)c0 3628   ifcif 3739   ~Pcpw 3799   {csn 3814   U.cuni 4015   class class class wbr 4212    e. cmpt 4266   dom cdm 4878   ran crn 4879   -1-1-onto->wf1o 5453   ` cfv 5454  recscrecs 6632    ~~ cen 7106   Fincfn 7109   cardccrd 7822
This theorem is referenced by:  ttukeyg  8397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-riota 6549  df-recs 6633  df-1o 6724  df-er 6905  df-en 7110  df-dom 7111  df-fin 7113  df-card 7826
  Copyright terms: Public domain W3C validator