MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2ndc Unicode version

Theorem tx2ndc 17361
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
tx2ndc  |-  ( ( R  e.  2ndc  /\  S  e.  2ndc )  ->  ( R  tX  S )  e. 
2ndc )

Proof of Theorem tx2ndc
Dummy variables  s 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 is2ndc 17188 . 2  |-  ( R  e.  2ndc  <->  E. r  e.  TopBases  ( r  ~<_  om  /\  ( topGen `
 r )  =  R ) )
2 is2ndc 17188 . 2  |-  ( S  e.  2ndc  <->  E. s  e.  TopBases  ( s  ~<_  om  /\  ( topGen `
 s )  =  S ) )
3 reeanv 2720 . . 3  |-  ( E. r  e.  TopBases  E. s  e. 
TopBases  ( ( r  ~<_  om 
/\  ( topGen `  r
)  =  R )  /\  ( s  ~<_  om 
/\  ( topGen `  s
)  =  S ) )  <->  ( E. r  e. 
TopBases  ( r  ~<_  om  /\  ( topGen `  r )  =  R )  /\  E. s  e.  TopBases  ( s  ~<_  om  /\  ( topGen `  s
)  =  S ) ) )
4 an4 797 . . . . 5  |-  ( ( ( r  ~<_  om  /\  ( topGen `  r )  =  R )  /\  (
s  ~<_  om  /\  ( topGen `
 s )  =  S ) )  <->  ( (
r  ~<_  om  /\  s  ~<_  om )  /\  (
( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S ) ) )
5 txbasval 17317 . . . . . . . . . 10  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( ( topGen `
 r )  tX  ( topGen `  s )
)  =  ( r 
tX  s ) )
6 eqid 2296 . . . . . . . . . . 11  |-  ran  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  ran  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )
76txval 17275 . . . . . . . . . 10  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( r  tX  s )  =  (
topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
85, 7eqtrd 2328 . . . . . . . . 9  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( ( topGen `
 r )  tX  ( topGen `  s )
)  =  ( topGen ` 
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
98adantr 451 . . . . . . . 8  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
( topGen `  r )  tX  ( topGen `  s )
)  =  ( topGen ` 
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
106txbas 17278 . . . . . . . . . 10  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  e.  TopBases )
1110adantr 451 . . . . . . . . 9  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) )  e.  TopBases )
12 omelon 7363 . . . . . . . . . . . 12  |-  om  e.  On
13 vex 2804 . . . . . . . . . . . . . . . 16  |-  s  e. 
_V
1413xpdom1 6977 . . . . . . . . . . . . . . 15  |-  ( r  ~<_  om  ->  ( r  X.  s )  ~<_  ( om 
X.  s ) )
15 omex 7360 . . . . . . . . . . . . . . . 16  |-  om  e.  _V
1615xpdom2 6973 . . . . . . . . . . . . . . 15  |-  ( s  ~<_  om  ->  ( om  X.  s )  ~<_  ( om 
X.  om ) )
17 domtr 6930 . . . . . . . . . . . . . . 15  |-  ( ( ( r  X.  s
)  ~<_  ( om  X.  s )  /\  ( om  X.  s )  ~<_  ( om  X.  om )
)  ->  ( r  X.  s )  ~<_  ( om 
X.  om ) )
1814, 16, 17syl2an 463 . . . . . . . . . . . . . 14  |-  ( ( r  ~<_  om  /\  s  ~<_  om )  ->  ( r  X.  s )  ~<_  ( om  X.  om )
)
1918adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
r  X.  s )  ~<_  ( om  X.  om ) )
20 xpomen 7659 . . . . . . . . . . . . 13  |-  ( om 
X.  om )  ~~  om
21 domentr 6936 . . . . . . . . . . . . 13  |-  ( ( ( r  X.  s
)  ~<_  ( om  X.  om )  /\  ( om  X.  om )  ~~  om )  ->  ( r  X.  s )  ~<_  om )
2219, 20, 21sylancl 643 . . . . . . . . . . . 12  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
r  X.  s )  ~<_  om )
23 ondomen 7680 . . . . . . . . . . . 12  |-  ( ( om  e.  On  /\  ( r  X.  s
)  ~<_  om )  ->  (
r  X.  s )  e.  dom  card )
2412, 22, 23sylancr 644 . . . . . . . . . . 11  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
r  X.  s )  e.  dom  card )
25 eqid 2296 . . . . . . . . . . . . . 14  |-  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )
26 vex 2804 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
27 vex 2804 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
2826, 27xpex 4817 . . . . . . . . . . . . . 14  |-  ( x  X.  y )  e. 
_V
2925, 28fnmpt2i 6209 . . . . . . . . . . . . 13  |-  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  Fn  ( r  X.  s )
3029a1i 10 . . . . . . . . . . . 12  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  Fn  ( r  X.  s ) )
31 dffn4 5473 . . . . . . . . . . . 12  |-  ( ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  Fn  ( r  X.  s )  <->  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) : ( r  X.  s
) -onto-> ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )
3230, 31sylib 188 . . . . . . . . . . 11  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) : ( r  X.  s ) -onto-> ran  ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) ) )
33 fodomnum 7700 . . . . . . . . . . 11  |-  ( ( r  X.  s )  e.  dom  card  ->  ( ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) ) : ( r  X.  s )
-onto->
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ->  ran  ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) )  ~<_  ( r  X.  s ) ) )
3424, 32, 33sylc 56 . . . . . . . . . 10  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) )  ~<_  ( r  X.  s ) )
35 domtr 6930 . . . . . . . . . 10  |-  ( ( ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ~<_  ( r  X.  s )  /\  ( r  X.  s )  ~<_  om )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ~<_  om )
3634, 22, 35syl2anc 642 . . . . . . . . 9  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y
) )  ~<_  om )
37 2ndci 17190 . . . . . . . . 9  |-  ( ( ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  e.  TopBases 
/\  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  ~<_  om )  ->  ( topGen ` 
ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )  e.  2ndc )
3811, 36, 37syl2anc 642 . . . . . . . 8  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  ( topGen `
 ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )  e.  2ndc )
399, 38eqeltrd 2370 . . . . . . 7  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
( topGen `  r )  tX  ( topGen `  s )
)  e.  2ndc )
40 oveq12 5883 . . . . . . . 8  |-  ( ( ( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S )  ->  (
( topGen `  r )  tX  ( topGen `  s )
)  =  ( R 
tX  S ) )
4140eleq1d 2362 . . . . . . 7  |-  ( ( ( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S )  ->  (
( ( topGen `  r
)  tX  ( topGen `  s ) )  e. 
2ndc 
<->  ( R  tX  S
)  e.  2ndc )
)
4239, 41syl5ibcom 211 . . . . . 6  |-  ( ( ( r  e.  TopBases  /\  s  e.  TopBases )  /\  (
r  ~<_  om  /\  s  ~<_  om ) )  ->  (
( ( topGen `  r
)  =  R  /\  ( topGen `  s )  =  S )  ->  ( R  tX  S )  e. 
2ndc ) )
4342expimpd 586 . . . . 5  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( (
( r  ~<_  om  /\  s  ~<_  om )  /\  (
( topGen `  r )  =  R  /\  ( topGen `
 s )  =  S ) )  -> 
( R  tX  S
)  e.  2ndc )
)
444, 43syl5bi 208 . . . 4  |-  ( ( r  e.  TopBases  /\  s  e. 
TopBases )  ->  ( (
( r  ~<_  om  /\  ( topGen `  r )  =  R )  /\  (
s  ~<_  om  /\  ( topGen `
 s )  =  S ) )  -> 
( R  tX  S
)  e.  2ndc )
)
4544rexlimivv 2685 . . 3  |-  ( E. r  e.  TopBases  E. s  e. 
TopBases  ( ( r  ~<_  om 
/\  ( topGen `  r
)  =  R )  /\  ( s  ~<_  om 
/\  ( topGen `  s
)  =  S ) )  ->  ( R  tX  S )  e.  2ndc )
463, 45sylbir 204 . 2  |-  ( ( E. r  e.  TopBases  ( r  ~<_  om  /\  ( topGen `
 r )  =  R )  /\  E. s  e.  TopBases  ( s  ~<_  om  /\  ( topGen `  s
)  =  S ) )  ->  ( R  tX  S )  e.  2ndc )
471, 2, 46syl2anb 465 1  |-  ( ( R  e.  2ndc  /\  S  e.  2ndc )  ->  ( R  tX  S )  e. 
2ndc )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   class class class wbr 4039   Oncon0 4408   omcom 4672    X. cxp 4703   dom cdm 4705   ran crn 4706    Fn wfn 5266   -onto->wfo 5269   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876    ~~ cen 6876    ~<_ cdom 6877   cardccrd 7584   topGenctg 13358   TopBasesctb 16651   2ndcc2ndc 17180    tX ctx 17271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-acn 7591  df-topgen 13360  df-bases 16654  df-2ndc 17182  df-tx 17273
  Copyright terms: Public domain W3C validator