MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txflf Unicode version

Theorem txflf 17717
Description: Two sequences converge in a filter iff the sequence of their ordered pairs converges. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
txflf.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txflf.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txflf.l  |-  ( ph  ->  L  e.  ( Fil `  Z ) )
txflf.f  |-  ( ph  ->  F : Z --> X )
txflf.g  |-  ( ph  ->  G : Z --> Y )
txflf.h  |-  H  =  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)
Assertion
Ref Expression
txflf  |-  ( ph  ->  ( <. R ,  S >.  e.  ( ( ( J  tX  K ) 
fLimf  L ) `  H
)  <->  ( R  e.  ( ( J  fLimf  L ) `  F )  /\  S  e.  ( ( K  fLimf  L ) `
 G ) ) ) )
Distinct variable groups:    ph, n    n, F    n, G    n, Z    n, X    n, Y
Allowed substitution hints:    R( n)    S( n)    H( n)    J( n)    K( n)    L( n)

Proof of Theorem txflf
Dummy variables  u  h  v  z  f 
g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2804 . . . . . . . 8  |-  u  e. 
_V
2 vex 2804 . . . . . . . 8  |-  v  e. 
_V
31, 2xpex 4817 . . . . . . 7  |-  ( u  X.  v )  e. 
_V
43rgen2w 2624 . . . . . 6  |-  A. u  e.  J  A. v  e.  K  ( u  X.  v )  e.  _V
5 eqid 2296 . . . . . . 7  |-  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) )  =  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) )
6 eleq2 2357 . . . . . . . 8  |-  ( z  =  ( u  X.  v )  ->  ( <. R ,  S >.  e.  z  <->  <. R ,  S >.  e.  ( u  X.  v ) ) )
7 sseq2 3213 . . . . . . . . 9  |-  ( z  =  ( u  X.  v )  ->  (
( H " h
)  C_  z  <->  ( H " h )  C_  (
u  X.  v ) ) )
87rexbidv 2577 . . . . . . . 8  |-  ( z  =  ( u  X.  v )  ->  ( E. h  e.  L  ( H " h ) 
C_  z  <->  E. h  e.  L  ( H " h )  C_  (
u  X.  v ) ) )
96, 8imbi12d 311 . . . . . . 7  |-  ( z  =  ( u  X.  v )  ->  (
( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
)  <->  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) ) ) )
105, 9ralrnmpt2 5974 . . . . . 6  |-  ( A. u  e.  J  A. v  e.  K  (
u  X.  v )  e.  _V  ->  ( A. z  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v
) ) ( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
)  <->  A. u  e.  J  A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h )  C_  (
u  X.  v ) ) ) )
114, 10ax-mp 8 . . . . 5  |-  ( A. z  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
)  <->  A. u  e.  J  A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h )  C_  (
u  X.  v ) ) )
12 opelxp 4735 . . . . . . . . . . . . . . . 16  |-  ( <. R ,  S >.  e.  ( u  X.  v
)  <->  ( R  e.  u  /\  S  e.  v ) )
13 ancom 437 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  u  /\  S  e.  v )  <->  ( S  e.  v  /\  R  e.  u )
)
1412, 13bitri 240 . . . . . . . . . . . . . . 15  |-  ( <. R ,  S >.  e.  ( u  X.  v
)  <->  ( S  e.  v  /\  R  e.  u ) )
1514a1i 10 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( <. R ,  S >.  e.  ( u  X.  v )  <->  ( S  e.  v  /\  R  e.  u ) ) )
16 r19.40 2704 . . . . . . . . . . . . . . . . 17  |-  ( E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v )  ->  ( E. h  e.  L  A. n  e.  h  ( F `  n )  e.  u  /\  E. h  e.  L  A. n  e.  h  ( G `  n )  e.  v ) )
17 raleq 2749 . . . . . . . . . . . . . . . . . . 19  |-  ( h  =  f  ->  ( A. n  e.  h  ( F `  n )  e.  u  <->  A. n  e.  f  ( F `  n )  e.  u
) )
1817cbvrexv 2778 . . . . . . . . . . . . . . . . . 18  |-  ( E. h  e.  L  A. n  e.  h  ( F `  n )  e.  u  <->  E. f  e.  L  A. n  e.  f 
( F `  n
)  e.  u )
19 raleq 2749 . . . . . . . . . . . . . . . . . . 19  |-  ( h  =  g  ->  ( A. n  e.  h  ( G `  n )  e.  v  <->  A. n  e.  g  ( G `  n )  e.  v ) )
2019cbvrexv 2778 . . . . . . . . . . . . . . . . . 18  |-  ( E. h  e.  L  A. n  e.  h  ( G `  n )  e.  v  <->  E. g  e.  L  A. n  e.  g 
( G `  n
)  e.  v )
2118, 20anbi12i 678 . . . . . . . . . . . . . . . . 17  |-  ( ( E. h  e.  L  A. n  e.  h  ( F `  n )  e.  u  /\  E. h  e.  L  A. n  e.  h  ( G `  n )  e.  v )  <->  ( E. f  e.  L  A. n  e.  f  ( F `  n )  e.  u  /\  E. g  e.  L  A. n  e.  g  ( G `  n )  e.  v ) )
2216, 21sylib 188 . . . . . . . . . . . . . . . 16  |-  ( E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v )  ->  ( E. f  e.  L  A. n  e.  f 
( F `  n
)  e.  u  /\  E. g  e.  L  A. n  e.  g  ( G `  n )  e.  v ) )
23 reeanv 2720 . . . . . . . . . . . . . . . . 17  |-  ( E. f  e.  L  E. g  e.  L  ( A. n  e.  f 
( F `  n
)  e.  u  /\  A. n  e.  g  ( G `  n )  e.  v )  <->  ( E. f  e.  L  A. n  e.  f  ( F `  n )  e.  u  /\  E. g  e.  L  A. n  e.  g  ( G `  n )  e.  v ) )
24 txflf.l . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  L  e.  ( Fil `  Z ) )
25 filin 17565 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( L  e.  ( Fil `  Z )  /\  f  e.  L  /\  g  e.  L )  ->  (
f  i^i  g )  e.  L )
26253expb 1152 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( L  e.  ( Fil `  Z )  /\  (
f  e.  L  /\  g  e.  L )
)  ->  ( f  i^i  g )  e.  L
)
2724, 26sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f  e.  L  /\  g  e.  L ) )  -> 
( f  i^i  g
)  e.  L )
28 inss1 3402 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  i^i  g )  C_  f
29 ssralv 3250 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f  i^i  g ) 
C_  f  ->  ( A. n  e.  f 
( F `  n
)  e.  u  ->  A. n  e.  (
f  i^i  g )
( F `  n
)  e.  u ) )
3028, 29ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. n  e.  f  ( F `  n )  e.  u  ->  A. n  e.  ( f  i^i  g
) ( F `  n )  e.  u
)
31 inss2 3403 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  i^i  g )  C_  g
32 ssralv 3250 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( f  i^i  g ) 
C_  g  ->  ( A. n  e.  g 
( G `  n
)  e.  v  ->  A. n  e.  (
f  i^i  g )
( G `  n
)  e.  v ) )
3331, 32ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. n  e.  g  ( G `  n )  e.  v  ->  A. n  e.  ( f  i^i  g
) ( G `  n )  e.  v )
3430, 33anim12i 549 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A. n  e.  f  ( F `  n
)  e.  u  /\  A. n  e.  g  ( G `  n )  e.  v )  -> 
( A. n  e.  ( f  i^i  g
) ( F `  n )  e.  u  /\  A. n  e.  ( f  i^i  g ) ( G `  n
)  e.  v ) )
35 raleq 2749 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( h  =  ( f  i^i  g )  ->  ( A. n  e.  h  ( F `  n )  e.  u  <->  A. n  e.  ( f  i^i  g
) ( F `  n )  e.  u
) )
36 raleq 2749 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( h  =  ( f  i^i  g )  ->  ( A. n  e.  h  ( G `  n )  e.  v  <->  A. n  e.  ( f  i^i  g
) ( G `  n )  e.  v ) )
3735, 36anbi12d 691 . . . . . . . . . . . . . . . . . . . . 21  |-  ( h  =  ( f  i^i  g )  ->  (
( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v )  <->  ( A. n  e.  ( f  i^i  g ) ( F `
 n )  e.  u  /\  A. n  e.  ( f  i^i  g
) ( G `  n )  e.  v ) ) )
3837rspcev 2897 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( f  i^i  g
)  e.  L  /\  ( A. n  e.  ( f  i^i  g ) ( F `  n
)  e.  u  /\  A. n  e.  ( f  i^i  g ) ( G `  n )  e.  v ) )  ->  E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) )
3927, 34, 38syl2an 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f  e.  L  /\  g  e.  L )
)  /\  ( A. n  e.  f  ( F `  n )  e.  u  /\  A. n  e.  g  ( G `  n )  e.  v ) )  ->  E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) )
4039ex 423 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( f  e.  L  /\  g  e.  L ) )  -> 
( ( A. n  e.  f  ( F `  n )  e.  u  /\  A. n  e.  g  ( G `  n
)  e.  v )  ->  E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) ) )
4140rexlimdvva 2687 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E. f  e.  L  E. g  e.  L  ( A. n  e.  f  ( F `  n )  e.  u  /\  A. n  e.  g  ( G `  n
)  e.  v )  ->  E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) ) )
4223, 41syl5bir 209 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( E. f  e.  L  A. n  e.  f  ( F `  n )  e.  u  /\  E. g  e.  L  A. n  e.  g 
( G `  n
)  e.  v )  ->  E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) ) )
4322, 42impbid2 195 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v )  <->  ( E. f  e.  L  A. n  e.  f  ( F `  n )  e.  u  /\  E. g  e.  L  A. n  e.  g  ( G `  n )  e.  v ) ) )
44 df-ima 4718 . . . . . . . . . . . . . . . . . . 19  |-  ( H
" h )  =  ran  ( H  |`  h )
45 filelss 17563 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( L  e.  ( Fil `  Z )  /\  h  e.  L )  ->  h  C_  Z )
4624, 45sylan 457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  h  e.  L )  ->  h  C_  Z )
47 txflf.h . . . . . . . . . . . . . . . . . . . . . . 23  |-  H  =  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)
4847reseq1i 4967 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( H  |`  h )  =  ( ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  |`  h )
49 resmpt 5016 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( h 
C_  Z  ->  (
( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  |`  h )  =  ( n  e.  h  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) )
5048, 49syl5eq 2340 . . . . . . . . . . . . . . . . . . . . 21  |-  ( h 
C_  Z  ->  ( H  |`  h )  =  ( n  e.  h  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) )
5146, 50syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  h  e.  L )  ->  ( H  |`  h )  =  ( n  e.  h  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) )
5251rneqd 4922 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  h  e.  L )  ->  ran  ( H  |`  h )  =  ran  ( n  e.  h  |->  <. ( F `  n ) ,  ( G `  n ) >. )
)
5344, 52syl5eq 2340 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  h  e.  L )  ->  ( H " h )  =  ran  ( n  e.  h  |->  <. ( F `  n ) ,  ( G `  n )
>. ) )
5453sseq1d 3218 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  h  e.  L )  ->  (
( H " h
)  C_  ( u  X.  v )  <->  ran  ( n  e.  h  |->  <. ( F `  n ) ,  ( G `  n ) >. )  C_  ( u  X.  v
) ) )
55 opelxp 4735 . . . . . . . . . . . . . . . . . . 19  |-  ( <.
( F `  n
) ,  ( G `
 n ) >.  e.  ( u  X.  v
)  <->  ( ( F `
 n )  e.  u  /\  ( G `
 n )  e.  v ) )
5655ralbii 2580 . . . . . . . . . . . . . . . . . 18  |-  ( A. n  e.  h  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( u  X.  v )  <->  A. n  e.  h  ( ( F `  n )  e.  u  /\  ( G `  n
)  e.  v ) )
57 eqid 2296 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  h  |->  <. ( F `  n ) ,  ( G `  n ) >. )  =  ( n  e.  h  |->  <. ( F `  n ) ,  ( G `  n )
>. )
5857fmpt 5697 . . . . . . . . . . . . . . . . . . 19  |-  ( A. n  e.  h  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( u  X.  v )  <-> 
( n  e.  h  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
) : h --> ( u  X.  v ) )
59 opex 4253 . . . . . . . . . . . . . . . . . . . . 21  |-  <. ( F `  n ) ,  ( G `  n ) >.  e.  _V
6059, 57fnmpti 5388 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  h  |->  <. ( F `  n ) ,  ( G `  n ) >. )  Fn  h
61 df-f 5275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( n  e.  h  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) : h --> ( u  X.  v )  <->  ( (
n  e.  h  |->  <.
( F `  n
) ,  ( G `
 n ) >.
)  Fn  h  /\  ran  ( n  e.  h  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  C_  ( u  X.  v ) ) )
6260, 61mpbiran 884 . . . . . . . . . . . . . . . . . . 19  |-  ( ( n  e.  h  |->  <.
( F `  n
) ,  ( G `
 n ) >.
) : h --> ( u  X.  v )  <->  ran  ( n  e.  h  |->  <. ( F `  n ) ,  ( G `  n ) >. )  C_  ( u  X.  v
) )
6358, 62bitri 240 . . . . . . . . . . . . . . . . . 18  |-  ( A. n  e.  h  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( u  X.  v )  <->  ran  ( n  e.  h  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  C_  ( u  X.  v ) )
64 r19.26 2688 . . . . . . . . . . . . . . . . . 18  |-  ( A. n  e.  h  (
( F `  n
)  e.  u  /\  ( G `  n )  e.  v )  <->  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) )
6556, 63, 643bitr3i 266 . . . . . . . . . . . . . . . . 17  |-  ( ran  ( n  e.  h  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)  C_  ( u  X.  v )  <->  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) )
6654, 65syl6bb 252 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  h  e.  L )  ->  (
( H " h
)  C_  ( u  X.  v )  <->  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) ) )
6766rexbidva 2573 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( E. h  e.  L  ( H "
h )  C_  (
u  X.  v )  <->  E. h  e.  L  ( A. n  e.  h  ( F `  n )  e.  u  /\  A. n  e.  h  ( G `  n )  e.  v ) ) )
68 txflf.f . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  F : Z --> X )
6968adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  L )  ->  F : Z --> X )
70 ffun 5407 . . . . . . . . . . . . . . . . . . 19  |-  ( F : Z --> X  ->  Fun  F )
7169, 70syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  L )  ->  Fun  F )
72 filelss 17563 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( L  e.  ( Fil `  Z )  /\  f  e.  L )  ->  f  C_  Z )
7324, 72sylan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  L )  ->  f  C_  Z )
74 fdm 5409 . . . . . . . . . . . . . . . . . . . 20  |-  ( F : Z --> X  ->  dom  F  =  Z )
7569, 74syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  f  e.  L )  ->  dom  F  =  Z )
7673, 75sseqtr4d 3228 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  f  e.  L )  ->  f  C_ 
dom  F )
77 funimass4 5589 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  F  /\  f  C_ 
dom  F )  -> 
( ( F "
f )  C_  u  <->  A. n  e.  f  ( F `  n )  e.  u ) )
7871, 76, 77syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  L )  ->  (
( F " f
)  C_  u  <->  A. n  e.  f  ( F `  n )  e.  u
) )
7978rexbidva 2573 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. f  e.  L  ( F "
f )  C_  u  <->  E. f  e.  L  A. n  e.  f  ( F `  n )  e.  u ) )
80 txflf.g . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  G : Z --> Y )
8180adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  g  e.  L )  ->  G : Z --> Y )
82 ffun 5407 . . . . . . . . . . . . . . . . . . 19  |-  ( G : Z --> Y  ->  Fun  G )
8381, 82syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  g  e.  L )  ->  Fun  G )
84 filelss 17563 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( L  e.  ( Fil `  Z )  /\  g  e.  L )  ->  g  C_  Z )
8524, 84sylan 457 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  g  e.  L )  ->  g  C_  Z )
86 fdm 5409 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : Z --> Y  ->  dom  G  =  Z )
8781, 86syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  g  e.  L )  ->  dom  G  =  Z )
8885, 87sseqtr4d 3228 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  g  e.  L )  ->  g  C_ 
dom  G )
89 funimass4 5589 . . . . . . . . . . . . . . . . . 18  |-  ( ( Fun  G  /\  g  C_ 
dom  G )  -> 
( ( G "
g )  C_  v  <->  A. n  e.  g  ( G `  n )  e.  v ) )
9083, 88, 89syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  g  e.  L )  ->  (
( G " g
)  C_  v  <->  A. n  e.  g  ( G `  n )  e.  v ) )
9190rexbidva 2573 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( E. g  e.  L  ( G "
g )  C_  v  <->  E. g  e.  L  A. n  e.  g  ( G `  n )  e.  v ) )
9279, 91anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v )  <->  ( E. f  e.  L  A. n  e.  f  ( F `  n )  e.  u  /\  E. g  e.  L  A. n  e.  g  ( G `  n )  e.  v ) ) )
9343, 67, 923bitr4d 276 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( E. h  e.  L  ( H "
h )  C_  (
u  X.  v )  <-> 
( E. f  e.  L  ( F "
f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) )
9415, 93imbi12d 311 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  ( ( S  e.  v  /\  R  e.  u )  ->  ( E. f  e.  L  ( F "
f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) ) )
95 impexp 433 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  v  /\  R  e.  u
)  ->  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G "
g )  C_  v
) )  <->  ( S  e.  v  ->  ( R  e.  u  ->  ( E. f  e.  L  ( F " f ) 
C_  u  /\  E. g  e.  L  ( G " g )  C_  v ) ) ) )
9694, 95syl6bb 252 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  ( S  e.  v  ->  ( R  e.  u  ->  ( E. f  e.  L  ( F " f ) 
C_  u  /\  E. g  e.  L  ( G " g )  C_  v ) ) ) ) )
9796ralbidv 2576 . . . . . . . . . . 11  |-  ( ph  ->  ( A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  A. v  e.  K  ( S  e.  v  ->  ( R  e.  u  ->  ( E. f  e.  L  ( F " f ) 
C_  u  /\  E. g  e.  L  ( G " g )  C_  v ) ) ) ) )
98 eleq2 2357 . . . . . . . . . . . . 13  |-  ( x  =  v  ->  ( S  e.  x  <->  S  e.  v ) )
9998ralrab 2940 . . . . . . . . . . . 12  |-  ( A. v  e.  { x  e.  K  |  S  e.  x }  ( R  e.  u  ->  ( E. f  e.  L  ( F " f ) 
C_  u  /\  E. g  e.  L  ( G " g )  C_  v ) )  <->  A. v  e.  K  ( S  e.  v  ->  ( R  e.  u  ->  ( E. f  e.  L  ( F " f ) 
C_  u  /\  E. g  e.  L  ( G " g )  C_  v ) ) ) )
100 r19.21v 2643 . . . . . . . . . . . 12  |-  ( A. v  e.  { x  e.  K  |  S  e.  x }  ( R  e.  u  ->  ( E. f  e.  L  ( F " f ) 
C_  u  /\  E. g  e.  L  ( G " g )  C_  v ) )  <->  ( R  e.  u  ->  A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) )
10199, 100bitr3i 242 . . . . . . . . . . 11  |-  ( A. v  e.  K  ( S  e.  v  ->  ( R  e.  u  -> 
( E. f  e.  L  ( F "
f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) )  <->  ( R  e.  u  ->  A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) )
10297, 101syl6bb 252 . . . . . . . . . 10  |-  ( ph  ->  ( A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  ( R  e.  u  ->  A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) ) )
103102ralbidv 2576 . . . . . . . . 9  |-  ( ph  ->  ( A. u  e.  J  A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  A. u  e.  J  ( R  e.  u  ->  A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) ) )
104 eleq2 2357 . . . . . . . . . 10  |-  ( x  =  u  ->  ( R  e.  x  <->  R  e.  u ) )
105104ralrab 2940 . . . . . . . . 9  |-  ( A. u  e.  { x  e.  J  |  R  e.  x } A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v )  <->  A. u  e.  J  ( R  e.  u  ->  A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) )
106103, 105syl6bbr 254 . . . . . . . 8  |-  ( ph  ->  ( A. u  e.  J  A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  A. u  e.  { x  e.  J  |  R  e.  x } A. v  e.  {
x  e.  K  |  S  e.  x } 
( E. f  e.  L  ( F "
f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) )
107106adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. u  e.  J  A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  A. u  e.  { x  e.  J  |  R  e.  x } A. v  e.  {
x  e.  K  |  S  e.  x } 
( E. f  e.  L  ( F "
f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v ) ) )
108 txflf.j . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  X ) )
109 toponmax 16682 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
110108, 109syl 15 . . . . . . . . . 10  |-  ( ph  ->  X  e.  J )
111 eleq2 2357 . . . . . . . . . . . 12  |-  ( x  =  X  ->  ( R  e.  x  <->  R  e.  X ) )
112111rspcev 2897 . . . . . . . . . . 11  |-  ( ( X  e.  J  /\  R  e.  X )  ->  E. x  e.  J  R  e.  x )
113 rabn0 3487 . . . . . . . . . . 11  |-  ( { x  e.  J  |  R  e.  x }  =/=  (/)  <->  E. x  e.  J  R  e.  x )
114112, 113sylibr 203 . . . . . . . . . 10  |-  ( ( X  e.  J  /\  R  e.  X )  ->  { x  e.  J  |  R  e.  x }  =/=  (/) )
115110, 114sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  R  e.  X )  ->  { x  e.  J  |  R  e.  x }  =/=  (/) )
116 txflf.k . . . . . . . . . . 11  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
117 toponmax 16682 . . . . . . . . . . 11  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
118116, 117syl 15 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  K )
119 eleq2 2357 . . . . . . . . . . . 12  |-  ( x  =  Y  ->  ( S  e.  x  <->  S  e.  Y ) )
120119rspcev 2897 . . . . . . . . . . 11  |-  ( ( Y  e.  K  /\  S  e.  Y )  ->  E. x  e.  K  S  e.  x )
121 rabn0 3487 . . . . . . . . . . 11  |-  ( { x  e.  K  |  S  e.  x }  =/=  (/)  <->  E. x  e.  K  S  e.  x )
122120, 121sylibr 203 . . . . . . . . . 10  |-  ( ( Y  e.  K  /\  S  e.  Y )  ->  { x  e.  K  |  S  e.  x }  =/=  (/) )
123118, 122sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  S  e.  Y )  ->  { x  e.  K  |  S  e.  x }  =/=  (/) )
124115, 123anim12dan 810 . . . . . . . 8  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( { x  e.  J  |  R  e.  x }  =/=  (/)  /\  {
x  e.  K  |  S  e.  x }  =/=  (/) ) )
125 r19.28zv 3562 . . . . . . . . . 10  |-  ( { x  e.  K  |  S  e.  x }  =/=  (/)  ->  ( A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f ) 
C_  u  /\  E. g  e.  L  ( G " g )  C_  v )  <->  ( E. f  e.  L  ( F " f )  C_  u  /\  A. v  e. 
{ x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g ) 
C_  v ) ) )
126125ralbidv 2576 . . . . . . . . 9  |-  ( { x  e.  K  |  S  e.  x }  =/=  (/)  ->  ( A. u  e.  { x  e.  J  |  R  e.  x } A. v  e.  { x  e.  K  |  S  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v )  <->  A. u  e.  { x  e.  J  |  R  e.  x }  ( E. f  e.  L  ( F " f )  C_  u  /\  A. v  e.  {
x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g ) 
C_  v ) ) )
127 r19.27zv 3566 . . . . . . . . 9  |-  ( { x  e.  J  |  R  e.  x }  =/=  (/)  ->  ( A. u  e.  { x  e.  J  |  R  e.  x }  ( E. f  e.  L  ( F " f ) 
C_  u  /\  A. v  e.  { x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g )  C_  v
)  <->  ( A. u  e.  { x  e.  J  |  R  e.  x } E. f  e.  L  ( F " f ) 
C_  u  /\  A. v  e.  { x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g )  C_  v
) ) )
128126, 127sylan9bbr 681 . . . . . . . 8  |-  ( ( { x  e.  J  |  R  e.  x }  =/=  (/)  /\  { x  e.  K  |  S  e.  x }  =/=  (/) )  -> 
( A. u  e. 
{ x  e.  J  |  R  e.  x } A. v  e.  {
x  e.  K  |  S  e.  x } 
( E. f  e.  L  ( F "
f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v )  <->  ( A. u  e.  { x  e.  J  |  R  e.  x } E. f  e.  L  ( F " f )  C_  u  /\  A. v  e.  {
x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g ) 
C_  v ) ) )
129124, 128syl 15 . . . . . . 7  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. u  e. 
{ x  e.  J  |  R  e.  x } A. v  e.  {
x  e.  K  |  S  e.  x } 
( E. f  e.  L  ( F "
f )  C_  u  /\  E. g  e.  L  ( G " g ) 
C_  v )  <->  ( A. u  e.  { x  e.  J  |  R  e.  x } E. f  e.  L  ( F " f )  C_  u  /\  A. v  e.  {
x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g ) 
C_  v ) ) )
130107, 129bitrd 244 . . . . . 6  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. u  e.  J  A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  ( A. u  e.  { x  e.  J  |  R  e.  x } E. f  e.  L  ( F " f )  C_  u  /\  A. v  e.  {
x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g ) 
C_  v ) ) )
131104ralrab 2940 . . . . . . 7  |-  ( A. u  e.  { x  e.  J  |  R  e.  x } E. f  e.  L  ( F " f )  C_  u  <->  A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f ) 
C_  u ) )
13298ralrab 2940 . . . . . . 7  |-  ( A. v  e.  { x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g )  C_  v  <->  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g ) 
C_  v ) )
133131, 132anbi12i 678 . . . . . 6  |-  ( ( A. u  e.  {
x  e.  J  |  R  e.  x } E. f  e.  L  ( F " f ) 
C_  u  /\  A. v  e.  { x  e.  K  |  S  e.  x } E. g  e.  L  ( G " g )  C_  v
)  <->  ( A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
)  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g )  C_  v
) ) )
134130, 133syl6bb 252 . . . . 5  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. u  e.  J  A. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  ->  E. h  e.  L  ( H " h ) 
C_  ( u  X.  v ) )  <->  ( A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f ) 
C_  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g ) 
C_  v ) ) ) )
13511, 134syl5bb 248 . . . 4  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. z  e. 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) (
<. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
)  <->  ( A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
)  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g )  C_  v
) ) ) )
136135pm5.32da 622 . . 3  |-  ( ph  ->  ( ( ( R  e.  X  /\  S  e.  Y )  /\  A. z  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
) )  <->  ( ( R  e.  X  /\  S  e.  Y )  /\  ( A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
)  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g )  C_  v
) ) ) ) )
137 opelxp 4735 . . . 4  |-  ( <. R ,  S >.  e.  ( X  X.  Y
)  <->  ( R  e.  X  /\  S  e.  Y ) )
138137anbi1i 676 . . 3  |-  ( (
<. R ,  S >.  e.  ( X  X.  Y
)  /\  A. z  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) (
<. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
) )  <->  ( ( R  e.  X  /\  S  e.  Y )  /\  A. z  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v
) ) ( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
) ) )
139 an4 797 . . 3  |-  ( ( ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f ) 
C_  u ) )  /\  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g )  C_  v
) ) )  <->  ( ( R  e.  X  /\  S  e.  Y )  /\  ( A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
)  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g )  C_  v
) ) ) )
140136, 138, 1393bitr4g 279 . 2  |-  ( ph  ->  ( ( <. R ,  S >.  e.  ( X  X.  Y )  /\  A. z  e.  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) ) ( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h ) 
C_  z ) )  <-> 
( ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
) )  /\  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g ) 
C_  v ) ) ) ) )
141 eqid 2296 . . . . . . . 8  |-  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) )  =  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) )
142141txval 17275 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  =  (
topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) )
143108, 116, 142syl2anc 642 . . . . . 6  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) )
144143oveq1d 5889 . . . . 5  |-  ( ph  ->  ( ( J  tX  K )  fLimf  L )  =  ( ( topGen ` 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) 
fLimf  L ) )
145144fveq1d 5543 . . . 4  |-  ( ph  ->  ( ( ( J 
tX  K )  fLimf  L ) `  H )  =  ( ( (
topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) )  fLimf  L ) `  H ) )
146145eleq2d 2363 . . 3  |-  ( ph  ->  ( <. R ,  S >.  e.  ( ( ( J  tX  K ) 
fLimf  L ) `  H
)  <->  <. R ,  S >.  e.  ( ( (
topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) )  fLimf  L ) `  H ) ) )
147 txtopon 17302 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
148108, 116, 147syl2anc 642 . . . . 5  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
149143, 148eqeltrrd 2371 . . . 4  |-  ( ph  ->  ( topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) )  e.  (TopOn `  ( X  X.  Y
) ) )
150 ffvelrn 5679 . . . . . . 7  |-  ( ( F : Z --> X  /\  n  e.  Z )  ->  ( F `  n
)  e.  X )
15168, 150sylan 457 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  X )
152 ffvelrn 5679 . . . . . . 7  |-  ( ( G : Z --> Y  /\  n  e.  Z )  ->  ( G `  n
)  e.  Y )
15380, 152sylan 457 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  ( G `  n )  e.  Y )
154 opelxpi 4737 . . . . . 6  |-  ( ( ( F `  n
)  e.  X  /\  ( G `  n )  e.  Y )  ->  <. ( F `  n
) ,  ( G `
 n ) >.  e.  ( X  X.  Y
) )
155151, 153, 154syl2anc 642 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( X  X.  Y ) )
156155, 47fmptd 5700 . . . 4  |-  ( ph  ->  H : Z --> ( X  X.  Y ) )
157 eqid 2296 . . . . 5  |-  ( topGen ` 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) )  =  ( topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v
) ) )
158157flftg 17707 . . . 4  |-  ( ( ( topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) )  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  ( Fil `  Z
)  /\  H : Z
--> ( X  X.  Y
) )  ->  ( <. R ,  S >.  e.  ( ( ( topGen ` 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) 
fLimf  L ) `  H
)  <->  ( <. R ,  S >.  e.  ( X  X.  Y )  /\  A. z  e.  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) ) ( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h ) 
C_  z ) ) ) )
159149, 24, 156, 158syl3anc 1182 . . 3  |-  ( ph  ->  ( <. R ,  S >.  e.  ( ( (
topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) )  fLimf  L ) `  H )  <->  ( <. R ,  S >.  e.  ( X  X.  Y )  /\  A. z  e. 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) (
<. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h )  C_  z
) ) ) )
160146, 159bitrd 244 . 2  |-  ( ph  ->  ( <. R ,  S >.  e.  ( ( ( J  tX  K ) 
fLimf  L ) `  H
)  <->  ( <. R ,  S >.  e.  ( X  X.  Y )  /\  A. z  e.  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) ) ( <. R ,  S >.  e.  z  ->  E. h  e.  L  ( H " h ) 
C_  z ) ) ) )
161 isflf 17704 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Z
)  /\  F : Z
--> X )  ->  ( R  e.  ( ( J  fLimf  L ) `  F )  <->  ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
) ) ) )
162108, 24, 68, 161syl3anc 1182 . . 3  |-  ( ph  ->  ( R  e.  ( ( J  fLimf  L ) `
 F )  <->  ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
) ) ) )
163 isflf 17704 . . . 4  |-  ( ( K  e.  (TopOn `  Y )  /\  L  e.  ( Fil `  Z
)  /\  G : Z
--> Y )  ->  ( S  e.  ( ( K  fLimf  L ) `  G )  <->  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g )  C_  v
) ) ) )
164116, 24, 80, 163syl3anc 1182 . . 3  |-  ( ph  ->  ( S  e.  ( ( K  fLimf  L ) `
 G )  <->  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g )  C_  v
) ) ) )
165162, 164anbi12d 691 . 2  |-  ( ph  ->  ( ( R  e.  ( ( J  fLimf  L ) `  F )  /\  S  e.  ( ( K  fLimf  L ) `
 G ) )  <-> 
( ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. f  e.  L  ( F " f )  C_  u
) )  /\  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. g  e.  L  ( G " g ) 
C_  v ) ) ) ) )
166140, 160, 1653bitr4d 276 1  |-  ( ph  ->  ( <. R ,  S >.  e.  ( ( ( J  tX  K ) 
fLimf  L ) `  H
)  <->  ( R  e.  ( ( J  fLimf  L ) `  F )  /\  S  e.  ( ( K  fLimf  L ) `
 G ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   <.cop 3656    e. cmpt 4093    X. cxp 4703   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   topGenctg 13358  TopOnctopon 16648    tX ctx 17271   Filcfil 17556    fLimf cflf 17646
This theorem is referenced by:  flfcnp2  17718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-map 6790  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-ntr 16773  df-nei 16851  df-tx 17273  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651
  Copyright terms: Public domain W3C validator