MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txlm Unicode version

Theorem txlm 17342
Description: Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
txlm.z  |-  Z  =  ( ZZ>= `  M )
txlm.m  |-  ( ph  ->  M  e.  ZZ )
txlm.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txlm.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txlm.f  |-  ( ph  ->  F : Z --> X )
txlm.g  |-  ( ph  ->  G : Z --> Y )
txlm.h  |-  H  =  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)
Assertion
Ref Expression
txlm  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  H ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. ) )
Distinct variable groups:    n, F    ph, n    n, G    n, J    n, K    n, X    n, Y    n, Z
Allowed substitution hints:    R( n)    S( n)    H( n)    M( n)

Proof of Theorem txlm
Dummy variables  j 
k  u  v  w  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.27av 2681 . . . . . . . 8  |-  ( ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )  ->  A. u  e.  J  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )
2 r19.28av 2682 . . . . . . . . 9  |-  ( ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )  ->  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )
32ralimi 2618 . . . . . . . 8  |-  ( A. u  e.  J  (
( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )  ->  A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )
41, 3syl 15 . . . . . . 7  |-  ( ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )  ->  A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )
5 simprl 732 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w ) )  ->  w  e.  ( J  tX  K ) )
6 txlm.j . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  J  e.  (TopOn `  X ) )
7 topontop 16664 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
86, 7syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  J  e.  Top )
9 txlm.k . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
10 topontop 16664 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
119, 10syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  K  e.  Top )
12 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) )  =  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) )
1312txval 17259 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) )
148, 11, 13syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( J  tX  K
)  =  ( topGen ` 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) )
1514adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w ) )  ->  ( J  tX  K )  =  (
topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) )
165, 15eleqtrd 2359 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w ) )  ->  w  e.  ( topGen `  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) ) )
17 simprr 733 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w ) )  ->  <. R ,  S >.  e.  w )
18 tg2 16703 . . . . . . . . . . . . . 14  |-  ( ( w  e.  ( topGen ` 
ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) )  /\  <. R ,  S >.  e.  w )  ->  E. t  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v
) ) ( <. R ,  S >.  e.  t  /\  t  C_  w ) )
1916, 17, 18syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w ) )  ->  E. t  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) ) (
<. R ,  S >.  e.  t  /\  t  C_  w ) )
20 vex 2791 . . . . . . . . . . . . . . . 16  |-  u  e. 
_V
21 vex 2791 . . . . . . . . . . . . . . . 16  |-  v  e. 
_V
2220, 21xpex 4801 . . . . . . . . . . . . . . 15  |-  ( u  X.  v )  e. 
_V
2322rgen2w 2611 . . . . . . . . . . . . . 14  |-  A. u  e.  J  A. v  e.  K  ( u  X.  v )  e.  _V
24 eqid 2283 . . . . . . . . . . . . . . 15  |-  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) )  =  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v ) )
25 eleq2 2344 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( u  X.  v )  ->  ( <. R ,  S >.  e.  t  <->  <. R ,  S >.  e.  ( u  X.  v ) ) )
26 sseq1 3199 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( u  X.  v )  ->  (
t  C_  w  <->  ( u  X.  v )  C_  w
) )
2725, 26anbi12d 691 . . . . . . . . . . . . . . 15  |-  ( t  =  ( u  X.  v )  ->  (
( <. R ,  S >.  e.  t  /\  t  C_  w )  <->  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) ) )
2824, 27rexrnmpt2 5959 . . . . . . . . . . . . . 14  |-  ( A. u  e.  J  A. v  e.  K  (
u  X.  v )  e.  _V  ->  ( E. t  e.  ran  ( u  e.  J ,  v  e.  K  |->  ( u  X.  v
) ) ( <. R ,  S >.  e.  t  /\  t  C_  w )  <->  E. u  e.  J  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) ) )
2923, 28ax-mp 8 . . . . . . . . . . . . 13  |-  ( E. t  e.  ran  (
u  e.  J , 
v  e.  K  |->  ( u  X.  v ) ) ( <. R ,  S >.  e.  t  /\  t  C_  w )  <->  E. u  e.  J  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )
3019, 29sylib 188 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w ) )  ->  E. u  e.  J  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )
3130ex 423 . . . . . . . . . . 11  |-  ( ph  ->  ( ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w )  ->  E. u  e.  J  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  w ) ) )
32 r19.29 2683 . . . . . . . . . . . . 13  |-  ( ( A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  /\  E. u  e.  J  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  E. u  e.  J  ( A. v  e.  K  (
( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )  /\  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  w )
) )
33 r19.29 2683 . . . . . . . . . . . . . . 15  |-  ( ( A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  /\  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  E. v  e.  K  ( (
( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  w )
) )
34 simprl 732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  <. R ,  S >.  e.  ( u  X.  v ) )
35 opelxp 4719 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( <. R ,  S >.  e.  ( u  X.  v
)  <->  ( R  e.  u  /\  S  e.  v ) )
3634, 35sylib 188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  ( R  e.  u  /\  S  e.  v )
)
37 pm2.27 35 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( R  e.  u  ->  (
( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
38 pm2.27 35 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( S  e.  v  ->  (
( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )
3937, 38im2anan9 808 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  u  /\  S  e.  v )  ->  ( ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )
4036, 39syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  (
( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )
41 txlm.z . . . . . . . . . . . . . . . . . . . . . 22  |-  Z  =  ( ZZ>= `  M )
4241rexanuz2 11833 . . . . . . . . . . . . . . . . . . . . 21  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  u  /\  ( G `  k )  e.  v )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )
4341uztrn2 10245 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
44 opelxpi 4721 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( F `  k
)  e.  u  /\  ( G `  k )  e.  v )  ->  <. ( F `  k
) ,  ( G `
 k ) >.  e.  ( u  X.  v
) )
45 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
46 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
4745, 46opeq12d 3804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( n  =  k  ->  <. ( F `  n ) ,  ( G `  n ) >.  =  <. ( F `  k ) ,  ( G `  k ) >. )
48 txlm.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  H  =  ( n  e.  Z  |-> 
<. ( F `  n
) ,  ( G `
 n ) >.
)
49 opex 4237 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  <. ( F `  k ) ,  ( G `  k ) >.  e.  _V
5047, 48, 49fvmpt 5602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( k  e.  Z  ->  ( H `  k )  =  <. ( F `  k ) ,  ( G `  k )
>. )
5150eleq1d 2349 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( k  e.  Z  ->  (
( H `  k
)  e.  ( u  X.  v )  <->  <. ( F `
 k ) ,  ( G `  k
) >.  e.  ( u  X.  v ) ) )
5244, 51syl5ibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( k  e.  Z  ->  (
( ( F `  k )  e.  u  /\  ( G `  k
)  e.  v )  ->  ( H `  k )  e.  ( u  X.  v ) ) )
5352adantl 452 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  u  /\  ( G `  k
)  e.  v )  ->  ( H `  k )  e.  ( u  X.  v ) ) )
54 simplrr 737 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  /\  k  e.  Z )  ->  (
u  X.  v ) 
C_  w )
5554sseld 3179 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  /\  k  e.  Z )  ->  (
( H `  k
)  e.  ( u  X.  v )  -> 
( H `  k
)  e.  w ) )
5653, 55syld 40 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  /\  k  e.  Z )  ->  (
( ( F `  k )  e.  u  /\  ( G `  k
)  e.  v )  ->  ( H `  k )  e.  w
) )
5743, 56sylan2 460 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( F `  k )  e.  u  /\  ( G `  k )  e.  v )  ->  ( H `  k )  e.  w ) )
5857anassrs 629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
ph  /\  u  e.  J )  /\  v  e.  K )  /\  ( <. R ,  S >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
) )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
)  e.  u  /\  ( G `  k )  e.  v )  -> 
( H `  k
)  e.  w ) )
5958ralimdva 2621 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  u  /\  ( G `  k )  e.  v )  ->  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) )
6059reximdva 2655 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  u  /\  ( G `  k )  e.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) )
6142, 60syl5bir 209 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  (
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( G `
 k )  e.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) )
6240, 61syld 40 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  u  e.  J )  /\  v  e.  K
)  /\  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  (
( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) )
6362ex 423 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  u  e.  J )  /\  v  e.  K )  ->  (
( <. R ,  S >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  w )  -> 
( ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) )
6463com23 72 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  u  e.  J )  /\  v  e.  K )  ->  (
( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  ( ( <. R ,  S >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) )
6564imp3a 420 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  u  e.  J )  /\  v  e.  K )  ->  (
( ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  /\  ( <. R ,  S >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) )
6665rexlimdva 2667 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  u  e.  J )  ->  ( E. v  e.  K  ( ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  /\  ( <. R ,  S >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) )
6733, 66syl5 28 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  J )  ->  (
( A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  /\  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) )
6867rexlimdva 2667 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. u  e.  J  ( A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( G `
 k )  e.  v ) )  /\  E. v  e.  K  (
<. R ,  S >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) )
6932, 68syl5 28 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( G `
 k )  e.  v ) )  /\  E. u  e.  J  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) )
7069exp3acom23 1362 . . . . . . . . . . 11  |-  ( ph  ->  ( E. u  e.  J  E. v  e.  K  ( <. R ,  S >.  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  w )  ->  ( A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) )
7131, 70syld 40 . . . . . . . . . 10  |-  ( ph  ->  ( ( w  e.  ( J  tX  K
)  /\  <. R ,  S >.  e.  w )  ->  ( A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( G `
 k )  e.  v ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) ) )
7271expdimp 426 . . . . . . . . 9  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  ( <. R ,  S >.  e.  w  ->  ( A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) )
7372com23 72 . . . . . . . 8  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  ( A. u  e.  J  A. v  e.  K  (
( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )  ->  ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) ) )
7473ralrimdva 2633 . . . . . . 7  |-  ( ph  ->  ( A. u  e.  J  A. v  e.  K  ( ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) ) )
754, 74syl5 28 . . . . . 6  |-  ( ph  ->  ( ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) ) )
7675adantr 451 . . . . 5  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  ->  A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) ) )
778adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  ->  J  e.  Top )
7811adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  ->  K  e.  Top )
79 simprr 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  ->  u  e.  J )
80 toponmax 16666 . . . . . . . . . . . . . 14  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
819, 80syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  K )
8281adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  ->  Y  e.  K )
83 txopn 17297 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( u  e.  J  /\  Y  e.  K
) )  ->  (
u  X.  Y )  e.  ( J  tX  K ) )
8477, 78, 79, 82, 83syl22anc 1183 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  -> 
( u  X.  Y
)  e.  ( J 
tX  K ) )
85 eleq2 2344 . . . . . . . . . . . . 13  |-  ( w  =  ( u  X.  Y )  ->  ( <. R ,  S >.  e.  w  <->  <. R ,  S >.  e.  ( u  X.  Y ) ) )
86 eleq2 2344 . . . . . . . . . . . . . 14  |-  ( w  =  ( u  X.  Y )  ->  (
( H `  k
)  e.  w  <->  ( H `  k )  e.  ( u  X.  Y ) ) )
8786rexralbidv 2587 . . . . . . . . . . . . 13  |-  ( w  =  ( u  X.  Y )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( u  X.  Y ) ) )
8885, 87imbi12d 311 . . . . . . . . . . . 12  |-  ( w  =  ( u  X.  Y )  ->  (
( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  <-> 
( <. R ,  S >.  e.  ( u  X.  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( u  X.  Y ) ) ) )
8988rspcv 2880 . . . . . . . . . . 11  |-  ( ( u  X.  Y )  e.  ( J  tX  K )  ->  ( A. w  e.  ( J  tX  K ) (
<. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  ->  ( <. R ,  S >.  e.  ( u  X.  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  ( u  X.  Y ) ) ) )
9084, 89syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  -> 
( A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w )  -> 
( <. R ,  S >.  e.  ( u  X.  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( u  X.  Y ) ) ) )
91 simprl 732 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  ->  S  e.  Y )
92 opelxpi 4721 . . . . . . . . . . . . 13  |-  ( ( R  e.  u  /\  S  e.  Y )  -> 
<. R ,  S >.  e.  ( u  X.  Y
) )
9391, 92sylan2 460 . . . . . . . . . . . 12  |-  ( ( R  e.  u  /\  ( ph  /\  ( S  e.  Y  /\  u  e.  J ) ) )  ->  <. R ,  S >.  e.  ( u  X.  Y ) )
9493expcom 424 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  -> 
( R  e.  u  -> 
<. R ,  S >.  e.  ( u  X.  Y
) ) )
9550eleq1d 2349 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Z  ->  (
( H `  k
)  e.  ( u  X.  Y )  <->  <. ( F `
 k ) ,  ( G `  k
) >.  e.  ( u  X.  Y ) ) )
96 opelxp1 4722 . . . . . . . . . . . . . . . 16  |-  ( <.
( F `  k
) ,  ( G `
 k ) >.  e.  ( u  X.  Y
)  ->  ( F `  k )  e.  u
)
9795, 96syl6bi 219 . . . . . . . . . . . . . . 15  |-  ( k  e.  Z  ->  (
( H `  k
)  e.  ( u  X.  Y )  -> 
( F `  k
)  e.  u ) )
9843, 97syl 15 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( H `  k )  e.  ( u  X.  Y )  ->  ( F `  k )  e.  u
) )
9998ralimdva 2621 . . . . . . . . . . . . 13  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  ( u  X.  Y )  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) )
10099reximia 2648 . . . . . . . . . . . 12  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( H `
 k )  e.  ( u  X.  Y
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )
101100a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( u  X.  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )
10294, 101imim12d 68 . . . . . . . . . 10  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  -> 
( ( <. R ,  S >.  e.  ( u  X.  Y )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  ( u  X.  Y ) )  -> 
( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
10390, 102syld 40 . . . . . . . . 9  |-  ( (
ph  /\  ( S  e.  Y  /\  u  e.  J ) )  -> 
( A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w )  -> 
( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
104103anassrs 629 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  Y )  /\  u  e.  J )  ->  ( A. w  e.  ( J  tX  K ) (
<. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  ->  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) ) )
105104ralrimdva 2633 . . . . . . 7  |-  ( (
ph  /\  S  e.  Y )  ->  ( A. w  e.  ( J  tX  K ) (
<. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  ->  A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
106105adantrl 696 . . . . . 6  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w )  ->  A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) ) )
1078adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  ->  J  e.  Top )
10811adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  ->  K  e.  Top )
109 toponmax 16666 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1106, 109syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  J )
111110adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  ->  X  e.  J )
112 simprr 733 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  -> 
v  e.  K )
113 txopn 17297 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( X  e.  J  /\  v  e.  K
) )  ->  ( X  X.  v )  e.  ( J  tX  K
) )
114107, 108, 111, 112, 113syl22anc 1183 . . . . . . . . . . 11  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  -> 
( X  X.  v
)  e.  ( J 
tX  K ) )
115 eleq2 2344 . . . . . . . . . . . . 13  |-  ( w  =  ( X  X.  v )  ->  ( <. R ,  S >.  e.  w  <->  <. R ,  S >.  e.  ( X  X.  v ) ) )
116 eleq2 2344 . . . . . . . . . . . . . 14  |-  ( w  =  ( X  X.  v )  ->  (
( H `  k
)  e.  w  <->  ( H `  k )  e.  ( X  X.  v ) ) )
117116rexralbidv 2587 . . . . . . . . . . . . 13  |-  ( w  =  ( X  X.  v )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( X  X.  v ) ) )
118115, 117imbi12d 311 . . . . . . . . . . . 12  |-  ( w  =  ( X  X.  v )  ->  (
( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  <-> 
( <. R ,  S >.  e.  ( X  X.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( X  X.  v ) ) ) )
119118rspcv 2880 . . . . . . . . . . 11  |-  ( ( X  X.  v )  e.  ( J  tX  K )  ->  ( A. w  e.  ( J  tX  K ) (
<. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  ->  ( <. R ,  S >.  e.  ( X  X.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  ( X  X.  v ) ) ) )
120114, 119syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  -> 
( A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w )  -> 
( <. R ,  S >.  e.  ( X  X.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( X  X.  v ) ) ) )
121 opelxpi 4721 . . . . . . . . . . . . 13  |-  ( ( R  e.  X  /\  S  e.  v )  -> 
<. R ,  S >.  e.  ( X  X.  v
) )
122121ex 423 . . . . . . . . . . . 12  |-  ( R  e.  X  ->  ( S  e.  v  ->  <. R ,  S >.  e.  ( X  X.  v
) ) )
123122ad2antrl 708 . . . . . . . . . . 11  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  -> 
( S  e.  v  ->  <. R ,  S >.  e.  ( X  X.  v ) ) )
12450eleq1d 2349 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Z  ->  (
( H `  k
)  e.  ( X  X.  v )  <->  <. ( F `
 k ) ,  ( G `  k
) >.  e.  ( X  X.  v ) ) )
125 opelxp2 4723 . . . . . . . . . . . . . . . 16  |-  ( <.
( F `  k
) ,  ( G `
 k ) >.  e.  ( X  X.  v
)  ->  ( G `  k )  e.  v )
126124, 125syl6bi 219 . . . . . . . . . . . . . . 15  |-  ( k  e.  Z  ->  (
( H `  k
)  e.  ( X  X.  v )  -> 
( G `  k
)  e.  v ) )
12743, 126syl 15 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
( ( H `  k )  e.  ( X  X.  v )  ->  ( G `  k )  e.  v ) )
128127ralimdva 2621 . . . . . . . . . . . . 13  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  ( X  X.  v )  ->  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )
129128reximia 2648 . . . . . . . . . . . 12  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( H `
 k )  e.  ( X  X.  v
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v )
130129a1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  ( X  X.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) )
131123, 130imim12d 68 . . . . . . . . . 10  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  -> 
( ( <. R ,  S >.  e.  ( X  X.  v )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  ( X  X.  v ) )  -> 
( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) ) )
132120, 131syld 40 . . . . . . . . 9  |-  ( (
ph  /\  ( R  e.  X  /\  v  e.  K ) )  -> 
( A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w )  -> 
( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) ) )
133132anassrs 629 . . . . . . . 8  |-  ( ( ( ph  /\  R  e.  X )  /\  v  e.  K )  ->  ( A. w  e.  ( J  tX  K ) (
<. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  ->  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )
134133ralrimdva 2633 . . . . . . 7  |-  ( (
ph  /\  R  e.  X )  ->  ( A. w  e.  ( J  tX  K ) (
<. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w )  ->  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) ) )
135134adantrr 697 . . . . . 6  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w )  ->  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) ) )
136106, 135jcad 519 . . . . 5  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w )  -> 
( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) ) )
13776, 136impbid 183 . . . 4  |-  ( (
ph  /\  ( R  e.  X  /\  S  e.  Y ) )  -> 
( ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) )  <->  A. w  e.  ( J  tX  K ) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) )
138137pm5.32da 622 . . 3  |-  ( ph  ->  ( ( ( R  e.  X  /\  S  e.  Y )  /\  ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) ) )  <->  ( ( R  e.  X  /\  S  e.  Y )  /\  A. w  e.  ( J  tX  K ) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) ) )
139 opelxp 4719 . . . 4  |-  ( <. R ,  S >.  e.  ( X  X.  Y
)  <->  ( R  e.  X  /\  S  e.  Y ) )
140139anbi1i 676 . . 3  |-  ( (
<. R ,  S >.  e.  ( X  X.  Y
)  /\  A. w  e.  ( J  tX  K
) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( H `  k )  e.  w ) )  <-> 
( ( R  e.  X  /\  S  e.  Y )  /\  A. w  e.  ( J  tX  K ) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) )
141138, 140syl6bbr 254 . 2  |-  ( ph  ->  ( ( ( R  e.  X  /\  S  e.  Y )  /\  ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( G `  k )  e.  v ) ) )  <->  ( <. R ,  S >.  e.  ( X  X.  Y )  /\  A. w  e.  ( J 
tX  K ) (
<. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) ) )
142 txlm.m . . . . 5  |-  ( ph  ->  M  e.  ZZ )
143 txlm.f . . . . 5  |-  ( ph  ->  F : Z --> X )
144 eqidd 2284 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
1456, 41, 142, 143, 144lmbrf 16990 . . . 4  |-  ( ph  ->  ( F ( ~~> t `  J ) R  <->  ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u ) ) ) )
146 txlm.g . . . . 5  |-  ( ph  ->  G : Z --> Y )
147 eqidd 2284 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
1489, 41, 142, 146, 147lmbrf 16990 . . . 4  |-  ( ph  ->  ( G ( ~~> t `  K ) S  <->  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) ) )
149145, 148anbi12d 691 . . 3  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  ( ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )  /\  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) ) ) )
150 an4 797 . . 3  |-  ( ( ( R  e.  X  /\  A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  u ) )  /\  ( S  e.  Y  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) )  <->  ( ( R  e.  X  /\  S  e.  Y )  /\  ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) ) )
151149, 150syl6bb 252 . 2  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  ( ( R  e.  X  /\  S  e.  Y )  /\  ( A. u  e.  J  ( R  e.  u  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  u )  /\  A. v  e.  K  ( S  e.  v  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( G `  k
)  e.  v ) ) ) ) )
152 txtopon 17286 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
1536, 9, 152syl2anc 642 . . 3  |-  ( ph  ->  ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) ) )
154 ffvelrn 5663 . . . . . 6  |-  ( ( F : Z --> X  /\  n  e.  Z )  ->  ( F `  n
)  e.  X )
155143, 154sylan 457 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( F `  n )  e.  X )
156 ffvelrn 5663 . . . . . 6  |-  ( ( G : Z --> Y  /\  n  e.  Z )  ->  ( G `  n
)  e.  Y )
157146, 156sylan 457 . . . . 5  |-  ( (
ph  /\  n  e.  Z )  ->  ( G `  n )  e.  Y )
158 opelxpi 4721 . . . . 5  |-  ( ( ( F `  n
)  e.  X  /\  ( G `  n )  e.  Y )  ->  <. ( F `  n
) ,  ( G `
 n ) >.  e.  ( X  X.  Y
) )
159155, 157, 158syl2anc 642 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  <. ( F `  n ) ,  ( G `  n ) >.  e.  ( X  X.  Y ) )
160159, 48fmptd 5684 . . 3  |-  ( ph  ->  H : Z --> ( X  X.  Y ) )
161 eqidd 2284 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( H `  k ) )
162153, 41, 142, 160, 161lmbrf 16990 . 2  |-  ( ph  ->  ( H ( ~~> t `  ( J  tX  K ) ) <. R ,  S >.  <-> 
( <. R ,  S >.  e.  ( X  X.  Y )  /\  A. w  e.  ( J  tX  K ) ( <. R ,  S >.  e.  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( H `  k
)  e.  w ) ) ) )
163141, 151, 1623bitr4d 276 1  |-  ( ph  ->  ( ( F ( ~~> t `  J ) R  /\  G ( ~~> t `  K ) S )  <->  H ( ~~> t `  ( J  tX  K ) ) <. R ,  S >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   <.cop 3643   class class class wbr 4023    e. cmpt 4077    X. cxp 4687   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   ZZcz 10024   ZZ>=cuz 10230   topGenctg 13342   Topctop 16631  TopOnctopon 16632   ~~> tclm 16956    tX ctx 17255
This theorem is referenced by:  lmcn2  17343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-neg 9040  df-z 10025  df-uz 10231  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-lm 16959  df-tx 17257
  Copyright terms: Public domain W3C validator