MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcn Unicode version

Theorem txmetcn 18094
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
txmetcnp.4  |-  L  =  ( MetOpen `  E )
Assertion
Ref Expression
txmetcn  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  ->  ( F  e.  ( ( J  tX  K )  Cn  L )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  <  w  /\  (
y D v )  <  w )  -> 
( ( x F y ) E ( u F v ) )  <  z ) ) ) )
Distinct variable groups:    v, u, w, x, y, z, F   
u, J, v, w, x, y, z    u, K, v, w, x, y, z    u, X, v, w, x, y, z   
u, Y, v, w, x, y, z    u, Z, v, w, x, y, z    u, C, v, w, x, y, z   
u, D, v, w, x, y, z    u, E, v, w, x, y, z    w, L, x, y, z
Allowed substitution hints:    L( v, u)

Proof of Theorem txmetcn
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 metcn.2 . . . . . 6  |-  J  =  ( MetOpen `  C )
21mopntopon 17985 . . . . 5  |-  ( C  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
3 metcn.4 . . . . . 6  |-  K  =  ( MetOpen `  D )
43mopntopon 17985 . . . . 5  |-  ( D  e.  ( * Met `  Y )  ->  K  e.  (TopOn `  Y )
)
5 txtopon 17286 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y
) ) )
62, 4, 5syl2an 463 . . . 4  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
) )  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y ) ) )
763adant3 975 . . 3  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  ->  ( J  tX  K )  e.  (TopOn `  ( X  X.  Y ) ) )
8 txmetcnp.4 . . . . 5  |-  L  =  ( MetOpen `  E )
98mopntopon 17985 . . . 4  |-  ( E  e.  ( * Met `  Z )  ->  L  e.  (TopOn `  Z )
)
1093ad2ant3 978 . . 3  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  ->  L  e.  (TopOn `  Z )
)
11 cncnp 17009 . . 3  |-  ( ( ( J  tX  K
)  e.  (TopOn `  ( X  X.  Y
) )  /\  L  e.  (TopOn `  Z )
)  ->  ( F  e.  ( ( J  tX  K )  Cn  L
)  <->  ( F :
( X  X.  Y
) --> Z  /\  A. t  e.  ( X  X.  Y ) F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  t
) ) ) )
127, 10, 11syl2anc 642 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  ->  ( F  e.  ( ( J  tX  K )  Cn  L )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. t  e.  ( X  X.  Y ) F  e.  ( ( ( J  tX  K )  CnP  L ) `  t ) ) ) )
13 fveq2 5525 . . . . . 6  |-  ( t  =  <. x ,  y
>.  ->  ( ( ( J  tX  K )  CnP  L ) `  t )  =  ( ( ( J  tX  K )  CnP  L
) `  <. x ,  y >. ) )
1413eleq2d 2350 . . . . 5  |-  ( t  =  <. x ,  y
>.  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  t
)  <->  F  e.  (
( ( J  tX  K )  CnP  L
) `  <. x ,  y >. ) ) )
1514ralxp 4827 . . . 4  |-  ( A. t  e.  ( X  X.  Y ) F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  t
)  <->  A. x  e.  X  A. y  e.  Y  F  e.  ( (
( J  tX  K
)  CnP  L ) `  <. x ,  y
>. ) )
161, 3, 8txmetcnp 18093 . . . . . . 7  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  (
x  e.  X  /\  y  e.  Y )
)  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. x ,  y >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( x C u )  <  w  /\  ( y D v )  <  w )  ->  ( ( x F y ) E ( u F v ) )  <  z
) ) ) )
1716adantlr 695 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( F  e.  ( ( ( J  tX  K )  CnP  L
) `  <. x ,  y >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  <  w  /\  (
y D v )  <  w )  -> 
( ( x F y ) E ( u F v ) )  <  z ) ) ) )
18 simplr 731 . . . . . . 7  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  F : ( X  X.  Y ) --> Z )
1918biantrurd 494 . . . . . 6  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( x C u )  <  w  /\  ( y D v )  <  w )  ->  ( ( x F y ) E ( u F v ) )  <  z
)  <->  ( F :
( X  X.  Y
) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  <  w  /\  (
y D v )  <  w )  -> 
( ( x F y ) E ( u F v ) )  <  z ) ) ) )
2017, 19bitr4d 247 . . . . 5  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  F : ( X  X.  Y ) --> Z )  /\  ( x  e.  X  /\  y  e.  Y ) )  -> 
( F  e.  ( ( ( J  tX  K )  CnP  L
) `  <. x ,  y >. )  <->  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  < 
w  /\  ( y D v )  < 
w )  ->  (
( x F y ) E ( u F v ) )  <  z ) ) )
21202ralbidva 2583 . . . 4  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  F : ( X  X.  Y ) --> Z )  ->  ( A. x  e.  X  A. y  e.  Y  F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. x ,  y >. )  <->  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  <  w  /\  (
y D v )  <  w )  -> 
( ( x F y ) E ( u F v ) )  <  z ) ) )
2215, 21syl5bb 248 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  F : ( X  X.  Y ) --> Z )  ->  ( A. t  e.  ( X  X.  Y
) F  e.  ( ( ( J  tX  K )  CnP  L
) `  t )  <->  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  <  w  /\  (
y D v )  <  w )  -> 
( ( x F y ) E ( u F v ) )  <  z ) ) )
2322pm5.32da 622 . 2  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  ->  (
( F : ( X  X.  Y ) --> Z  /\  A. t  e.  ( X  X.  Y
) F  e.  ( ( ( J  tX  K )  CnP  L
) `  t )
)  <->  ( F :
( X  X.  Y
) --> Z  /\  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  <  w  /\  (
y D v )  <  w )  -> 
( ( x F y ) E ( u F v ) )  <  z ) ) ) )
2412, 23bitrd 244 1  |-  ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  ->  ( F  e.  ( ( J  tX  K )  Cn  L )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. x  e.  X  A. y  e.  Y  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( x C u )  <  w  /\  (
y D v )  <  w )  -> 
( ( x F y ) E ( u F v ) )  <  z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   <.cop 3643   class class class wbr 4023    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858    < clt 8867   RR+crp 10354   * Metcxmt 16369   MetOpencmopn 16372  TopOnctopon 16632    Cn ccn 16954    CnP ccnp 16955    tX ctx 17255
This theorem is referenced by:  ngptgp  18152  nlmvscn  18198  xmetdcn2  18342  addcnlem  18368  ipcn  18673  vacn  21267  smcnlem  21270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-tms 17887
  Copyright terms: Public domain W3C validator