MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txmetcnp Unicode version

Theorem txmetcnp 18093
Description: Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
txmetcnp.4  |-  L  =  ( MetOpen `  E )
Assertion
Ref Expression
txmetcnp  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z
) ) ) )
Distinct variable groups:    v, u, w, z, F    u, J, v, w, z    u, K, v, w, z    u, X, v, w, z    u, Y, v, w, z    u, Z, v, w, z    u, A, v, w, z    u, C, v, w, z    u, D, v, w, z    u, B, v, w, z    u, E, v, w, z    w, L, z
Allowed substitution hints:    L( v, u)

Proof of Theorem txmetcnp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . 4  |-  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) )  =  (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) )
2 simpl1 958 . . . 4  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  C  e.  ( * Met `  X
) )
3 simpl2 959 . . . 4  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  D  e.  ( * Met `  Y
) )
41, 2, 3tmsxps 18082 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) )  e.  ( * Met `  ( X  X.  Y ) ) )
5 simpl3 960 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  E  e.  ( * Met `  Z
) )
6 opelxpi 4721 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y )  -> 
<. A ,  B >.  e.  ( X  X.  Y
) )
76adantl 452 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  <. A ,  B >.  e.  ( X  X.  Y ) )
8 eqid 2283 . . . 4  |-  ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  =  ( MetOpen `  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) ) )
9 txmetcnp.4 . . . 4  |-  L  =  ( MetOpen `  E )
108, 9metcnp 18087 . . 3  |-  ( ( ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )  e.  ( * Met `  ( X  X.  Y
) )  /\  E  e.  ( * Met `  Z
)  /\  <. A ,  B >.  e.  ( X  X.  Y ) )  ->  ( F  e.  ( ( ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  CnP  L ) `  <. A ,  B >. )  <-> 
( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  <  w  ->  ( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z ) ) ) )
114, 5, 7, 10syl3anc 1182 . 2  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  CnP  L ) `  <. A ,  B >. )  <-> 
( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  <  w  ->  ( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z ) ) ) )
12 metcn.2 . . . . . 6  |-  J  =  ( MetOpen `  C )
13 metcn.4 . . . . . 6  |-  K  =  ( MetOpen `  D )
141, 2, 3, 12, 13, 8tmsxpsmopn 18083 . . . . 5  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  =  ( J  tX  K ) )
1514oveq1d 5873 . . . 4  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( ( MetOpen
`  ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) )  CnP  L )  =  ( ( J 
tX  K )  CnP 
L ) )
1615fveq1d 5527 . . 3  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( (
( MetOpen `  ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) ) )  CnP 
L ) `  <. A ,  B >. )  =  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. ) )
1716eleq2d 2350 . 2  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( MetOpen `  ( dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) )  CnP  L ) `  <. A ,  B >. )  <-> 
F  e.  ( ( ( J  tX  K
)  CnP  L ) `  <. A ,  B >. ) ) )
18 oveq2 5866 . . . . . . . . 9  |-  ( x  =  <. u ,  v
>.  ->  ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  =  (
<. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
) )
1918breq1d 4033 . . . . . . . 8  |-  ( x  =  <. u ,  v
>.  ->  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  <->  ( <. A ,  B >. ( dist `  ( (toMetSp `  C
)  X.s  (toMetSp `  D )
) ) <. u ,  v >. )  <  w ) )
20 df-ov 5861 . . . . . . . . . . 11  |-  ( A F B )  =  ( F `  <. A ,  B >. )
2120oveq1i 5868 . . . . . . . . . 10  |-  ( ( A F B ) E ( F `  x ) )  =  ( ( F `  <. A ,  B >. ) E ( F `  x ) )
22 fveq2 5525 . . . . . . . . . . . 12  |-  ( x  =  <. u ,  v
>.  ->  ( F `  x )  =  ( F `  <. u ,  v >. )
)
23 df-ov 5861 . . . . . . . . . . . 12  |-  ( u F v )  =  ( F `  <. u ,  v >. )
2422, 23syl6eqr 2333 . . . . . . . . . . 11  |-  ( x  =  <. u ,  v
>.  ->  ( F `  x )  =  ( u F v ) )
2524oveq2d 5874 . . . . . . . . . 10  |-  ( x  =  <. u ,  v
>.  ->  ( ( A F B ) E ( F `  x
) )  =  ( ( A F B ) E ( u F v ) ) )
2621, 25syl5eqr 2329 . . . . . . . . 9  |-  ( x  =  <. u ,  v
>.  ->  ( ( F `
 <. A ,  B >. ) E ( F `
 x ) )  =  ( ( A F B ) E ( u F v ) ) )
2726breq1d 4033 . . . . . . . 8  |-  ( x  =  <. u ,  v
>.  ->  ( ( ( F `  <. A ,  B >. ) E ( F `  x ) )  <  z  <->  ( ( A F B ) E ( u F v ) )  <  z
) )
2819, 27imbi12d 311 . . . . . . 7  |-  ( x  =  <. u ,  v
>.  ->  ( ( (
<. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z ) ) )
2928ralxp 4827 . . . . . 6  |-  ( A. x  e.  ( X  X.  Y ) ( (
<. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  A. u  e.  X  A. v  e.  Y  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z ) )
302ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  C  e.  ( * Met `  X
) )
313ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  D  e.  ( * Met `  Y
) )
32 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  ( A  e.  X  /\  B  e.  Y )
)
3332simpld 445 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  A  e.  X )
3432simprd 449 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  B  e.  Y )
35 simprrl 740 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  u  e.  X )
36 simprrr 741 . . . . . . . . . . . 12  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  v  e.  Y )
371, 30, 31, 33, 34, 35, 36tmsxpsval2 18085 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  =  if ( ( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) ) )
3837breq1d 4033 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  (
( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )
<. u ,  v >.
)  <  w  <->  if (
( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) )  <  w ) )
39 xmetcl 17896 . . . . . . . . . . . 12  |-  ( ( C  e.  ( * Met `  X )  /\  A  e.  X  /\  u  e.  X
)  ->  ( A C u )  e. 
RR* )
4030, 33, 35, 39syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  ( A C u )  e. 
RR* )
41 xmetcl 17896 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  Y )  /\  B  e.  Y  /\  v  e.  Y
)  ->  ( B D v )  e. 
RR* )
4231, 34, 36, 41syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  ( B D v )  e. 
RR* )
43 rpxr 10361 . . . . . . . . . . . 12  |-  ( w  e.  RR+  ->  w  e. 
RR* )
4443ad2antrl 708 . . . . . . . . . . 11  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  w  e.  RR* )
45 xrmaxlt 10510 . . . . . . . . . . 11  |-  ( ( ( A C u )  e.  RR*  /\  ( B D v )  e. 
RR*  /\  w  e.  RR* )  ->  ( if ( ( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) )  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
4640, 42, 44, 45syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  ( if ( ( A C u )  <_  ( B D v ) ,  ( B D v ) ,  ( A C u ) )  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
4738, 46bitrd 244 . . . . . . . . 9  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  (
( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )
<. u ,  v >.
)  <  w  <->  ( ( A C u )  < 
w  /\  ( B D v )  < 
w ) ) )
4847imbi1d 308 . . . . . . . 8  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  ( w  e.  RR+  /\  (
u  e.  X  /\  v  e.  Y )
) )  ->  (
( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )
<. u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z )  <->  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
4948anassrs 629 . . . . . . 7  |-  ( ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  w  e.  RR+ )  /\  ( u  e.  X  /\  v  e.  Y
) )  ->  (
( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) )
<. u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z )  <->  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
50492ralbidva 2583 . . . . . 6  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  w  e.  RR+ )  -> 
( A. u  e.  X  A. v  e.  Y  ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) <.
u ,  v >.
)  <  w  ->  ( ( A F B ) E ( u F v ) )  <  z )  <->  A. u  e.  X  A. v  e.  Y  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
5129, 50syl5bb 248 . . . . 5  |-  ( ( ( ( ( C  e.  ( * Met `  X )  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  /\  w  e.  RR+ )  -> 
( A. x  e.  ( X  X.  Y
) ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  A. u  e.  X  A. v  e.  Y  ( (
( A C u )  <  w  /\  ( B D v )  <  w )  -> 
( ( A F B ) E ( u F v ) )  <  z ) ) )
5251rexbidva 2560 . . . 4  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  -> 
( E. w  e.  RR+  A. x  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  <  w  ->  ( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
5352ralbidv 2563 . . 3  |-  ( ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  F :
( X  X.  Y
) --> Z )  -> 
( A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y ) ( ( <. A ,  B >. ( dist `  (
(toMetSp `  C )  X.s  (toMetSp `  D ) ) ) x )  <  w  ->  ( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z )  <->  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  < 
w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) )
5453pm5.32da 622 . 2  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. x  e.  ( X  X.  Y
) ( ( <. A ,  B >. (
dist `  ( (toMetSp `  C )  X.s  (toMetSp `  D
) ) ) x )  <  w  -> 
( ( F `  <. A ,  B >. ) E ( F `  x ) )  < 
z ) )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  ( ( ( A C u )  <  w  /\  ( B D v )  < 
w )  ->  (
( A F B ) E ( u F v ) )  <  z ) ) ) )
5511, 17, 543bitr3d 274 1  |-  ( ( ( C  e.  ( * Met `  X
)  /\  D  e.  ( * Met `  Y
)  /\  E  e.  ( * Met `  Z
) )  /\  ( A  e.  X  /\  B  e.  Y )
)  ->  ( F  e.  ( ( ( J 
tX  K )  CnP 
L ) `  <. A ,  B >. )  <->  ( F : ( X  X.  Y ) --> Z  /\  A. z  e.  RR+  E. w  e.  RR+  A. u  e.  X  A. v  e.  Y  (
( ( A C u )  <  w  /\  ( B D v )  <  w )  ->  ( ( A F B ) E ( u F v ) )  <  z
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   ifcif 3565   <.cop 3643   class class class wbr 4023    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   RR*cxr 8866    < clt 8867    <_ cle 8868   RR+crp 10354   distcds 13217    X.s cxps 13409   * Metcxmt 16369   MetOpencmopn 16372    CnP ccnp 16955    tX ctx 17255  toMetSpctmt 17884
This theorem is referenced by:  txmetcn  18094  cxpcn3  20088
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cn 16957  df-cnp 16958  df-tx 17257  df-hmeo 17446  df-xms 17885  df-tms 17887
  Copyright terms: Public domain W3C validator