MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txnlly Unicode version

Theorem txnlly 17331
Description: If the property  A is preserved under topological products, then so is the property of being n-locally  A. (Contributed by Mario Carneiro, 13-Apr-2015.)
Hypothesis
Ref Expression
txlly.1  |-  ( ( j  e.  A  /\  k  e.  A )  ->  ( j  tX  k
)  e.  A )
Assertion
Ref Expression
txnlly  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  ( R  tX  S )  e. 𝑛Locally  A )
Distinct variable groups:    j, k, A    R, j, k    S, k
Allowed substitution hint:    S( j)

Proof of Theorem txnlly
Dummy variables  a 
b  r  s  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 17199 . . 3  |-  ( R  e. 𝑛Locally  A  ->  R  e.  Top )
2 nllytop 17199 . . 3  |-  ( S  e. 𝑛Locally  A  ->  S  e.  Top )
3 txtop 17264 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 463 . 2  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  ( R  tX  S )  e. 
Top )
5 eltx 17263 . . . 4  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  (
x  e.  ( R 
tX  S )  <->  A. y  e.  x  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  x
) ) )
6 simpll 730 . . . . . . . . 9  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  R  e. 𝑛Locally  A )
7 simprll 738 . . . . . . . . 9  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  u  e.  R )
8 simprrl 740 . . . . . . . . . 10  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  y  e.  ( u  X.  v
) )
9 xp1st 6149 . . . . . . . . . 10  |-  ( y  e.  ( u  X.  v )  ->  ( 1st `  y )  e.  u )
108, 9syl 15 . . . . . . . . 9  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  ( 1st `  y )  e.  u )
11 nlly2i 17202 . . . . . . . . 9  |-  ( ( R  e. 𝑛Locally  A  /\  u  e.  R  /\  ( 1st `  y )  e.  u )  ->  E. a  e.  ~P  u E. r  e.  R  ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A ) )
126, 7, 10, 11syl3anc 1182 . . . . . . . 8  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  E. a  e.  ~P  u E. r  e.  R  ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A ) )
13 simplr 731 . . . . . . . . 9  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  S  e. 𝑛Locally  A )
14 simprlr 739 . . . . . . . . 9  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  v  e.  S )
15 xp2nd 6150 . . . . . . . . . 10  |-  ( y  e.  ( u  X.  v )  ->  ( 2nd `  y )  e.  v )
168, 15syl 15 . . . . . . . . 9  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  ( 2nd `  y )  e.  v )
17 nlly2i 17202 . . . . . . . . 9  |-  ( ( S  e. 𝑛Locally  A  /\  v  e.  S  /\  ( 2nd `  y )  e.  v )  ->  E. b  e.  ~P  v E. s  e.  S  ( ( 2nd `  y )  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A ) )
1813, 14, 16, 17syl3anc 1182 . . . . . . . 8  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  E. b  e.  ~P  v E. s  e.  S  ( ( 2nd `  y )  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A ) )
19 reeanv 2707 . . . . . . . . 9  |-  ( E. a  e.  ~P  u E. b  e.  ~P  v ( E. r  e.  R  ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  E. s  e.  S  ( ( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) )  <->  ( E. a  e.  ~P  u E. r  e.  R  ( ( 1st `  y
)  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A
)  /\  E. b  e.  ~P  v E. s  e.  S  ( ( 2nd `  y )  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A ) ) )
20 reeanv 2707 . . . . . . . . . . 11  |-  ( E. r  e.  R  E. s  e.  S  (
( ( 1st `  y
)  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A
)  /\  ( ( 2nd `  y )  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A ) )  <-> 
( E. r  e.  R  ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  E. s  e.  S  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )
214ad3antrrr 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( R  tX  S
)  e.  Top )
221ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  R  e.  Top )
2322ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  ->  R  e.  Top )
2413, 2syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  S  e.  Top )
2524ad2antrr 706 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  ->  S  e.  Top )
26 simprrl 740 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( a  e.  ~P u  /\  b  e.  ~P v )  /\  (
r  e.  R  /\  s  e.  S )
) )  ->  r  e.  R )
2726adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
r  e.  R )
28 simprrr 741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( a  e.  ~P u  /\  b  e.  ~P v )  /\  (
r  e.  R  /\  s  e.  S )
) )  ->  s  e.  S )
2928adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
s  e.  S )
30 txopn 17297 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( r  e.  R  /\  s  e.  S
) )  ->  (
r  X.  s )  e.  ( R  tX  S ) )
3123, 25, 27, 29, 30syl22anc 1183 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( r  X.  s
)  e.  ( R 
tX  S ) )
328ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
y  e.  ( u  X.  v ) )
33 1st2nd2 6159 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( u  X.  v )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
3432, 33syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
35 simprl1 1000 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( 1st `  y
)  e.  r )
36 simprr1 1003 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( 2nd `  y
)  e.  s )
37 opelxpi 4721 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  y
)  e.  r  /\  ( 2nd `  y )  e.  s )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( r  X.  s ) )
3835, 36, 37syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  ( r  X.  s ) )
3934, 38eqeltrd 2357 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
y  e.  ( r  X.  s ) )
40 opnneip 16856 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  tX  S
)  e.  Top  /\  ( r  X.  s
)  e.  ( R 
tX  S )  /\  y  e.  ( r  X.  s ) )  -> 
( r  X.  s
)  e.  ( ( nei `  ( R 
tX  S ) ) `
 { y } ) )
4121, 31, 39, 40syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( r  X.  s
)  e.  ( ( nei `  ( R 
tX  S ) ) `
 { y } ) )
42 simprl2 1001 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
r  C_  a )
43 simprr2 1004 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
s  C_  b )
44 xpss12 4792 . . . . . . . . . . . . . . . . . 18  |-  ( ( r  C_  a  /\  s  C_  b )  -> 
( r  X.  s
)  C_  ( a  X.  b ) )
4542, 43, 44syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( r  X.  s
)  C_  ( a  X.  b ) )
46 simprll 738 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( a  e.  ~P u  /\  b  e.  ~P v )  /\  (
r  e.  R  /\  s  e.  S )
) )  ->  a  e.  ~P u )
4746adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
a  e.  ~P u
)
48 elpwi 3633 . . . . . . . . . . . . . . . . . . . . 21  |-  ( a  e.  ~P u  -> 
a  C_  u )
4947, 48syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
a  C_  u )
507ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  ->  u  e.  R )
51 elssuni 3855 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  e.  R  ->  u  C_ 
U. R )
5250, 51syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  ->  u  C_  U. R )
5349, 52sstrd 3189 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
a  C_  U. R )
54 simprlr 739 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( a  e.  ~P u  /\  b  e.  ~P v )  /\  (
r  e.  R  /\  s  e.  S )
) )  ->  b  e.  ~P v )
5554adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
b  e.  ~P v
)
56 elpwi 3633 . . . . . . . . . . . . . . . . . . . . 21  |-  ( b  e.  ~P v  -> 
b  C_  v )
5755, 56syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
b  C_  v )
5814ad2antrr 706 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
v  e.  S )
59 elssuni 3855 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  S  ->  v  C_ 
U. S )
6058, 59syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
v  C_  U. S )
6157, 60sstrd 3189 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
b  C_  U. S )
62 xpss12 4792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  C_  U. R  /\  b  C_  U. S )  ->  ( a  X.  b )  C_  ( U. R  X.  U. S
) )
6353, 61, 62syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( a  X.  b
)  C_  ( U. R  X.  U. S ) )
64 eqid 2283 . . . . . . . . . . . . . . . . . . . 20  |-  U. R  =  U. R
65 eqid 2283 . . . . . . . . . . . . . . . . . . . 20  |-  U. S  =  U. S
6664, 65txuni 17287 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( U. R  X.  U. S )  =  U. ( R  tX  S ) )
6723, 25, 66syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( U. R  X.  U. S )  =  U. ( R  tX  S ) )
6863, 67sseqtrd 3214 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( a  X.  b
)  C_  U. ( R  tX  S ) )
69 eqid 2283 . . . . . . . . . . . . . . . . . 18  |-  U. ( R  tX  S )  = 
U. ( R  tX  S )
7069ssnei2 16853 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  tX  S )  e.  Top  /\  ( r  X.  s
)  e.  ( ( nei `  ( R 
tX  S ) ) `
 { y } ) )  /\  (
( r  X.  s
)  C_  ( a  X.  b )  /\  (
a  X.  b ) 
C_  U. ( R  tX  S ) ) )  ->  ( a  X.  b )  e.  ( ( nei `  ( R  tX  S ) ) `
 { y } ) )
7121, 41, 45, 68, 70syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( a  X.  b
)  e.  ( ( nei `  ( R 
tX  S ) ) `
 { y } ) )
72 xpss12 4792 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a  C_  u  /\  b  C_  v )  -> 
( a  X.  b
)  C_  ( u  X.  v ) )
7349, 57, 72syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( a  X.  b
)  C_  ( u  X.  v ) )
74 simprrr 741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  (
u  X.  v ) 
C_  x )
7574ad2antrr 706 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( u  X.  v
)  C_  x )
7673, 75sstrd 3189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( a  X.  b
)  C_  x )
77 vex 2791 . . . . . . . . . . . . . . . . . 18  |-  x  e. 
_V
7877elpw2 4175 . . . . . . . . . . . . . . . . 17  |-  ( ( a  X.  b )  e.  ~P x  <->  ( a  X.  b )  C_  x
)
7976, 78sylibr 203 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( a  X.  b
)  e.  ~P x
)
80 elin 3358 . . . . . . . . . . . . . . . 16  |-  ( ( a  X.  b )  e.  ( ( ( nei `  ( R 
tX  S ) ) `
 { y } )  i^i  ~P x
)  <->  ( ( a  X.  b )  e.  ( ( nei `  ( R  tX  S ) ) `
 { y } )  /\  ( a  X.  b )  e. 
~P x ) )
8171, 79, 80sylanbrc 645 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( a  X.  b
)  e.  ( ( ( nei `  ( R  tX  S ) ) `
 { y } )  i^i  ~P x
) )
82 txrest 17325 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( a  e.  ~P u  /\  b  e.  ~P v ) )  -> 
( ( R  tX  S )t  ( a  X.  b ) )  =  ( ( Rt  a ) 
tX  ( St  b ) ) )
8323, 25, 47, 55, 82syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( ( R  tX  S )t  ( a  X.  b ) )  =  ( ( Rt  a ) 
tX  ( St  b ) ) )
84 simprl3 1002 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( Rt  a )  e.  A )
85 simprr3 1005 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( St  b )  e.  A )
86 txlly.1 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  A  /\  k  e.  A )  ->  ( j  tX  k
)  e.  A )
8786caovcl 6014 . . . . . . . . . . . . . . . . 17  |-  ( ( ( Rt  a )  e.  A  /\  ( St  b )  e.  A )  ->  ( ( Rt  a )  tX  ( St  b ) )  e.  A
)
8884, 85, 87syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( ( Rt  a ) 
tX  ( St  b ) )  e.  A )
8983, 88eqeltrd 2357 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  -> 
( ( R  tX  S )t  ( a  X.  b ) )  e.  A )
90 oveq2 5866 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a  X.  b )  ->  (
( R  tX  S
)t  z )  =  ( ( R  tX  S
)t  ( a  X.  b
) ) )
9190eleq1d 2349 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( a  X.  b )  ->  (
( ( R  tX  S )t  z )  e.  A  <->  ( ( R 
tX  S )t  ( a  X.  b ) )  e.  A ) )
9291rspcev 2884 . . . . . . . . . . . . . . 15  |-  ( ( ( a  X.  b
)  e.  ( ( ( nei `  ( R  tX  S ) ) `
 { y } )  i^i  ~P x
)  /\  ( ( R  tX  S )t  ( a  X.  b ) )  e.  A )  ->  E. z  e.  (
( ( nei `  ( R  tX  S ) ) `
 { y } )  i^i  ~P x
) ( ( R 
tX  S )t  z )  e.  A )
9381, 89, 92syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( ( a  e. 
~P u  /\  b  e.  ~P v )  /\  ( r  e.  R  /\  s  e.  S
) ) )  /\  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) ) )  ->  E. z  e.  (
( ( nei `  ( R  tX  S ) ) `
 { y } )  i^i  ~P x
) ( ( R 
tX  S )t  z )  e.  A )
9493ex 423 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
( a  e.  ~P u  /\  b  e.  ~P v )  /\  (
r  e.  R  /\  s  e.  S )
) )  ->  (
( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) )  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
9594anassrs 629 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
) ) )  /\  ( a  e.  ~P u  /\  b  e.  ~P v ) )  /\  ( r  e.  R  /\  s  e.  S
) )  ->  (
( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  (
( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) )  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
9695rexlimdvva 2674 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
a  e.  ~P u  /\  b  e.  ~P v ) )  -> 
( E. r  e.  R  E. s  e.  S  ( ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  ( ( 2nd `  y )  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A ) )  ->  E. z  e.  (
( ( nei `  ( R  tX  S ) ) `
 { y } )  i^i  ~P x
) ( ( R 
tX  S )t  z )  e.  A ) )
9720, 96syl5bir 209 . . . . . . . . . 10  |-  ( ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  /\  (
a  e.  ~P u  /\  b  e.  ~P v ) )  -> 
( ( E. r  e.  R  ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  E. s  e.  S  ( ( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) )  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
9897rexlimdvva 2674 . . . . . . . . 9  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  ( E. a  e.  ~P  u E. b  e.  ~P  v ( E. r  e.  R  ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  E. s  e.  S  ( ( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) )  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
9919, 98syl5bir 209 . . . . . . . 8  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  (
( E. a  e. 
~P  u E. r  e.  R  ( ( 1st `  y )  e.  r  /\  r  C_  a  /\  ( Rt  a )  e.  A )  /\  E. b  e.  ~P  v E. s  e.  S  ( ( 2nd `  y
)  e.  s  /\  s  C_  b  /\  ( St  b )  e.  A
) )  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
10012, 18, 99mp2and 660 . . . . . . 7  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( ( u  e.  R  /\  v  e.  S )  /\  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  x )
) )  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
)
101100expr 598 . . . . . 6  |-  ( ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  /\  ( u  e.  R  /\  v  e.  S
) )  ->  (
( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
)  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
102101rexlimdvva 2674 . . . . 5  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  ( E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
)  ->  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
103102ralimdv 2622 . . . 4  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  ( A. y  e.  x  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  x
)  ->  A. y  e.  x  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
1045, 103sylbid 206 . . 3  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  (
x  e.  ( R 
tX  S )  ->  A. y  e.  x  E. z  e.  (
( ( nei `  ( R  tX  S ) ) `
 { y } )  i^i  ~P x
) ( ( R 
tX  S )t  z )  e.  A ) )
105104ralrimiv 2625 . 2  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  A. x  e.  ( R  tX  S
) A. y  e.  x  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
)
106 isnlly 17195 . 2  |-  ( ( R  tX  S )  e. 𝑛Locally  A  <->  ( ( R 
tX  S )  e. 
Top  /\  A. x  e.  ( R  tX  S
) A. y  e.  x  E. z  e.  ( ( ( nei `  ( R  tX  S
) ) `  {
y } )  i^i 
~P x ) ( ( R  tX  S
)t  z )  e.  A
) )
1074, 105, 106sylanbrc 645 1  |-  ( ( R  e. 𝑛Locally  A  /\  S  e. 𝑛Locally  A )  ->  ( R  tX  S )  e. 𝑛Locally  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   <.cop 3643   U.cuni 3827    X. cxp 4687   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   ↾t crest 13325   Topctop 16631   neicnei 16834  𝑛Locally cnlly 17191    tX ctx 17255
This theorem is referenced by:  xkohmeo  17506  cvmlift2lem13  23846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rest 13327  df-topgen 13344  df-top 16636  df-bases 16638  df-topon 16639  df-nei 16835  df-nlly 17193  df-tx 17257
  Copyright terms: Public domain W3C validator