Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txprel Unicode version

Theorem txprel 24419
Description: A tail cross product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
txprel  |-  Rel  ( A  (x)  B )

Proof of Theorem txprel
StepHypRef Expression
1 txpss3v 24418 . . 3  |-  ( A 
(x)  B )  C_  ( _V  X.  ( _V  X.  _V ) )
2 xpss 4793 . . 3  |-  ( _V 
X.  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
31, 2sstri 3188 . 2  |-  ( A 
(x)  B )  C_  ( _V  X.  _V )
4 df-rel 4696 . 2  |-  ( Rel  ( A  (x)  B
)  <->  ( A  (x)  B )  C_  ( _V  X.  _V ) )
53, 4mpbir 200 1  |-  Rel  ( A  (x)  B )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2788    C_ wss 3152    X. cxp 4687   Rel wrel 4694    (x) ctxp 24373
This theorem is referenced by:  pprodss4v  24424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-res 4701  df-txp 24395
  Copyright terms: Public domain W3C validator