Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpss3v Unicode version

Theorem txpss3v 24418
Description: A tail cross product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
txpss3v  |-  ( A 
(x)  B )  C_  ( _V  X.  ( _V  X.  _V ) )

Proof of Theorem txpss3v
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 24395 . 2  |-  ( A 
(x)  B )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
2 inss1 3389 . . 3  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )  C_  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )
3 relco 5171 . . . 4  |-  Rel  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )
4 vex 2791 . . . . . . . . 9  |-  z  e. 
_V
5 vex 2791 . . . . . . . . 9  |-  y  e. 
_V
64, 5brcnv 4864 . . . . . . . 8  |-  ( z `' ( 1st  |`  ( _V  X.  _V ) ) y  <->  y ( 1st  |`  ( _V  X.  _V ) ) z )
74brres 4961 . . . . . . . . 9  |-  ( y ( 1st  |`  ( _V  X.  _V ) ) z  <->  ( y 1st z  /\  y  e.  ( _V  X.  _V ) ) )
87simprbi 450 . . . . . . . 8  |-  ( y ( 1st  |`  ( _V  X.  _V ) ) z  ->  y  e.  ( _V  X.  _V )
)
96, 8sylbi 187 . . . . . . 7  |-  ( z `' ( 1st  |`  ( _V  X.  _V ) ) y  ->  y  e.  ( _V  X.  _V )
)
109adantl 452 . . . . . 6  |-  ( ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y )  ->  y  e.  ( _V  X.  _V ) )
1110exlimiv 1666 . . . . 5  |-  ( E. z ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y )  ->  y  e.  ( _V  X.  _V ) )
12 vex 2791 . . . . . 6  |-  x  e. 
_V
1312, 5opelco 4853 . . . . 5  |-  ( <.
x ,  y >.  e.  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
)  <->  E. z ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y ) )
14 opelxp 4719 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) )  <-> 
( x  e.  _V  /\  y  e.  ( _V 
X.  _V ) ) )
1512, 14mpbiran 884 . . . . 5  |-  ( <.
x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) )  <-> 
y  e.  ( _V 
X.  _V ) )
1611, 13, 153imtr4i 257 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
)  ->  <. x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) ) )
173, 16relssi 4778 . . 3  |-  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  C_  ( _V  X.  ( _V  X.  _V ) )
182, 17sstri 3188 . 2  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )  C_  ( _V  X.  ( _V  X.  _V ) )
191, 18eqsstri 3208 1  |-  ( A 
(x)  B )  C_  ( _V  X.  ( _V  X.  _V ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    e. wcel 1684   _Vcvv 2788    i^i cin 3151    C_ wss 3152   <.cop 3643   class class class wbr 4023    X. cxp 4687   `'ccnv 4688    |` cres 4691    o. ccom 4693   1stc1st 6120   2ndc2nd 6121    (x) ctxp 24373
This theorem is referenced by:  txprel  24419  brtxp2  24421  pprodss4v  24424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-res 4701  df-txp 24395
  Copyright terms: Public domain W3C validator