MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txrest Structured version   Unicode version

Theorem txrest 17655
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txrest  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A ) 
tX  ( St  B ) ) )

Proof of Theorem txrest
Dummy variables  s 
r  u  v  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . . . 6  |-  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )  =  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )
21txval 17588 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
32adantr 452 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
43oveq1d 6088 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( topGen `  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) )t  ( A  X.  B ) ) )
51txbasex 17590 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V )
6 xpexg 4981 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A  X.  B
)  e.  _V )
7 tgrest 17215 . . . 4  |-  ( ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V  /\  ( A  X.  B )  e.  _V )  ->  ( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) )t  ( A  X.  B ) ) )
85, 6, 7syl2an 464 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) )t  ( A  X.  B ) ) )
9 elrest 13647 . . . . . . . 8  |-  ( ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V  /\  ( A  X.  B )  e.  _V )  ->  ( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
105, 6, 9syl2an 464 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
11 vex 2951 . . . . . . . . . . 11  |-  r  e. 
_V
1211inex1 4336 . . . . . . . . . 10  |-  ( r  i^i  A )  e. 
_V
1312a1i 11 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  r  e.  R )  ->  (
r  i^i  A )  e.  _V )
14 elrest 13647 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  A  e.  X )  ->  ( u  e.  ( Rt  A )  <->  E. r  e.  R  u  =  ( r  i^i  A
) ) )
1514ad2ant2r 728 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( u  e.  ( Rt  A )  <->  E. r  e.  R  u  =  ( r  i^i  A
) ) )
16 xpeq1 4884 . . . . . . . . . . . 12  |-  ( u  =  ( r  i^i 
A )  ->  (
u  X.  v )  =  ( ( r  i^i  A )  X.  v ) )
1716eqeq2d 2446 . . . . . . . . . . 11  |-  ( u  =  ( r  i^i 
A )  ->  (
x  =  ( u  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  v
) ) )
1817rexbidv 2718 . . . . . . . . . 10  |-  ( u  =  ( r  i^i 
A )  ->  ( E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. v  e.  ( St  B ) x  =  ( ( r  i^i 
A )  X.  v
) ) )
19 vex 2951 . . . . . . . . . . . . 13  |-  s  e. 
_V
2019inex1 4336 . . . . . . . . . . . 12  |-  ( s  i^i  B )  e. 
_V
2120a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  s  e.  S )  ->  (
s  i^i  B )  e.  _V )
22 elrest 13647 . . . . . . . . . . . 12  |-  ( ( S  e.  W  /\  B  e.  Y )  ->  ( v  e.  ( St  B )  <->  E. s  e.  S  v  =  ( s  i^i  B
) ) )
2322ad2ant2l 727 . . . . . . . . . . 11  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( v  e.  ( St  B )  <->  E. s  e.  S  v  =  ( s  i^i  B
) ) )
24 xpeq2 4885 . . . . . . . . . . . . 13  |-  ( v  =  ( s  i^i 
B )  ->  (
( r  i^i  A
)  X.  v )  =  ( ( r  i^i  A )  X.  ( s  i^i  B
) ) )
2524eqeq2d 2446 . . . . . . . . . . . 12  |-  ( v  =  ( s  i^i 
B )  ->  (
x  =  ( ( r  i^i  A )  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
2625adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  v  =  ( s  i^i  B
) )  ->  (
x  =  ( ( r  i^i  A )  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
2721, 23, 26rexxfr2d 4732 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. v  e.  ( St  B ) x  =  ( ( r  i^i 
A )  X.  v
)  <->  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
2818, 27sylan9bbr 682 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  u  =  ( r  i^i  A
) )  ->  ( E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
2913, 15, 28rexxfr2d 4732 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
3011, 19xpex 4982 . . . . . . . . . 10  |-  ( r  X.  s )  e. 
_V
3130rgen2w 2766 . . . . . . . . 9  |-  A. r  e.  R  A. s  e.  S  ( r  X.  s )  e.  _V
32 eqid 2435 . . . . . . . . . 10  |-  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  =  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )
33 ineq1 3527 . . . . . . . . . . . 12  |-  ( w  =  ( r  X.  s )  ->  (
w  i^i  ( A  X.  B ) )  =  ( ( r  X.  s )  i^i  ( A  X.  B ) ) )
34 inxp 4999 . . . . . . . . . . . 12  |-  ( ( r  X.  s )  i^i  ( A  X.  B ) )  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
)
3533, 34syl6eq 2483 . . . . . . . . . . 11  |-  ( w  =  ( r  X.  s )  ->  (
w  i^i  ( A  X.  B ) )  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) )
3635eqeq2d 2446 . . . . . . . . . 10  |-  ( w  =  ( r  X.  s )  ->  (
x  =  ( w  i^i  ( A  X.  B ) )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
3732, 36rexrnmpt2 6177 . . . . . . . . 9  |-  ( A. r  e.  R  A. s  e.  S  (
r  X.  s )  e.  _V  ->  ( E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) )  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
3831, 37ax-mp 8 . . . . . . . 8  |-  ( E. w  e.  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) ) x  =  ( w  i^i  ( A  X.  B ) )  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) )
3929, 38syl6bbr 255 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
4010, 39bitr4d 248 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) ) )
4140abbi2dv 2550 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  =  { x  |  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) } )
42 eqid 2435 . . . . . 6  |-  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B ) 
|->  ( u  X.  v
) )
4342rnmpt2 6172 . . . . 5  |-  ran  (
u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  { x  |  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) }
4441, 43syl6eqr 2485 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  =  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) )
4544fveq2d 5724 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B ) 
|->  ( u  X.  v
) ) ) )
464, 8, 453eqtr2d 2473 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) ) )
47 ovex 6098 . . 3  |-  ( Rt  A )  e.  _V
48 ovex 6098 . . 3  |-  ( St  B )  e.  _V
49 eqid 2435 . . . 4  |-  ran  (
u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )
5049txval 17588 . . 3  |-  ( ( ( Rt  A )  e.  _V  /\  ( St  B )  e.  _V )  ->  ( ( Rt  A )  tX  ( St  B ) )  =  (
topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) ) )
5147, 48, 50mp2an 654 . 2  |-  ( ( Rt  A )  tX  ( St  B ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) )
5246, 51syl6eqr 2485 1  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A ) 
tX  ( St  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421   A.wral 2697   E.wrex 2698   _Vcvv 2948    i^i cin 3311    X. cxp 4868   ran crn 4871   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   ↾t crest 13640   topGenctg 13657    tX ctx 17584
This theorem is referenced by:  txlly  17660  txnlly  17661  txkgen  17676  cnmpt2res  17701  xkoinjcn  17711  cnmpt2pc  18945  cnheiborlem  18971  lhop1lem  19889  cxpcn3  20624  raddcn  24307  cvmlift2lem6  24987  cvmlift2lem9  24990  cvmlift2lem12  24993
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-rest 13642  df-topgen 13659  df-tx 17586
  Copyright terms: Public domain W3C validator