Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txscon Structured version   Unicode version

Theorem txscon 24928
Description: The topological product of two simply connected spaces is simply connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txscon  |-  ( ( R  e. SCon  /\  S  e. SCon )  ->  ( R  tX  S )  e. SCon )

Proof of Theorem txscon
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconpcon 24914 . . 3  |-  ( R  e. SCon  ->  R  e. PCon )
2 sconpcon 24914 . . 3  |-  ( S  e. SCon  ->  S  e. PCon )
3 txpcon 24919 . . 3  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( R  tX  S )  e. PCon )
41, 2, 3syl2an 464 . 2  |-  ( ( R  e. SCon  /\  S  e. SCon )  ->  ( R  tX  S )  e. PCon )
5 simpll 731 . . . . . . . . 9  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  R  e. SCon )
6 simprl 733 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f  e.  ( II  Cn  ( R  tX  S ) ) )
7 scontop 24915 . . . . . . . . . . . . 13  |-  ( R  e. SCon  ->  R  e.  Top )
87ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  R  e.  Top )
9 eqid 2436 . . . . . . . . . . . . 13  |-  U. R  =  U. R
109toptopon 16998 . . . . . . . . . . . 12  |-  ( R  e.  Top  <->  R  e.  (TopOn `  U. R ) )
118, 10sylib 189 . . . . . . . . . . 11  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  R  e.  (TopOn `  U. R ) )
12 scontop 24915 . . . . . . . . . . . . 13  |-  ( S  e. SCon  ->  S  e.  Top )
1312ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  S  e.  Top )
14 eqid 2436 . . . . . . . . . . . . 13  |-  U. S  =  U. S
1514toptopon 16998 . . . . . . . . . . . 12  |-  ( S  e.  Top  <->  S  e.  (TopOn `  U. S ) )
1613, 15sylib 189 . . . . . . . . . . 11  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  S  e.  (TopOn `  U. S ) )
17 tx1cn 17641 . . . . . . . . . . 11  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( 1st  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  R
) )
1811, 16, 17syl2anc 643 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( 1st  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  R
) )
19 cnco 17330 . . . . . . . . . 10  |-  ( ( f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( 1st  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  R ) )  ->  ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  R ) )
206, 18, 19syl2anc 643 . . . . . . . . 9  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  R
) )
21 simprr 734 . . . . . . . . . . 11  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( f `  0 )  =  ( f `  1
) )
2221fveq2d 5732 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( ( 1st  |`  ( U. R  X.  U. S ) ) `
 ( f ` 
0 ) )  =  ( ( 1st  |`  ( U. R  X.  U. S
) ) `  (
f `  1 )
) )
23 iitopon 18909 . . . . . . . . . . . . 13  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
2423a1i 11 . . . . . . . . . . . 12  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  II  e.  (TopOn `  ( 0 [,] 1 ) ) )
25 txtopon 17623 . . . . . . . . . . . . 13  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( R  tX  S )  e.  (TopOn `  ( U. R  X.  U. S ) ) )
2611, 16, 25syl2anc 643 . . . . . . . . . . . 12  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( R  tX  S )  e.  (TopOn `  ( U. R  X.  U. S ) ) )
27 cnf2 17313 . . . . . . . . . . . 12  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  ( R  tX  S )  e.  (TopOn `  ( U. R  X.  U. S ) )  /\  f  e.  ( II  Cn  ( R  tX  S ) ) )  ->  f :
( 0 [,] 1
) --> ( U. R  X.  U. S ) )
2824, 26, 6, 27syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f :
( 0 [,] 1
) --> ( U. R  X.  U. S ) )
29 0elunit 11015 . . . . . . . . . . 11  |-  0  e.  ( 0 [,] 1
)
30 fvco3 5800 . . . . . . . . . . 11  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  0  e.  ( 0 [,] 1
) )  ->  (
( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 )  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( f `  0
) ) )
3128, 29, 30sylancl 644 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 )  =  ( ( 1st  |`  ( U. R  X.  U. S
) ) `  (
f `  0 )
) )
32 1elunit 11016 . . . . . . . . . . 11  |-  1  e.  ( 0 [,] 1
)
33 fvco3 5800 . . . . . . . . . . 11  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  1  e.  ( 0 [,] 1
) )  ->  (
( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  1 )  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( f `  1
) ) )
3428, 32, 33sylancl 644 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 1 )  =  ( ( 1st  |`  ( U. R  X.  U. S
) ) `  (
f `  1 )
) )
3522, 31, 343eqtr4d 2478 . . . . . . . . 9  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 )  =  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `  1
) )
36 sconpht 24916 . . . . . . . . 9  |-  ( ( R  e. SCon  /\  (
( 1st  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  R )  /\  (
( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 )  =  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 1 ) )  ->  ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) (  ~=ph  `  R ) ( ( 0 [,] 1 )  X.  { ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) )
375, 20, 35, 36syl3anc 1184 . . . . . . . 8  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( 
~=ph  `  R ) ( ( 0 [,] 1
)  X.  { ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) )
38 isphtpc 19019 . . . . . . . 8  |-  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) (  ~=ph  `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } )  <->  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  R )  /\  (
( 0 [,] 1
)  X.  { ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } )  e.  ( II  Cn  R )  /\  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  R )
( ( 0 [,] 1 )  X.  {
( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  =/=  (/) ) )
3937, 38sylib 189 . . . . . . 7  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 1st  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  R )  /\  (
( 0 [,] 1
)  X.  { ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } )  e.  ( II  Cn  R )  /\  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  R )
( ( 0 [,] 1 )  X.  {
( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  =/=  (/) ) )
4039simp3d 971 . . . . . 6  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  R )
( ( 0 [,] 1 )  X.  {
( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  =/=  (/) )
41 n0 3637 . . . . . 6  |-  ( ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  =/=  (/)  <->  E. g 
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) ) )
4240, 41sylib 189 . . . . 5  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  E. g 
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) ) )
43 simplr 732 . . . . . . . . 9  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  S  e. SCon )
44 tx2cn 17642 . . . . . . . . . . 11  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( 2nd  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  S
) )
4511, 16, 44syl2anc 643 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( 2nd  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  S
) )
46 cnco 17330 . . . . . . . . . 10  |-  ( ( f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( 2nd  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  S ) )  ->  ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  S ) )
476, 45, 46syl2anc 643 . . . . . . . . 9  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  S
) )
4821fveq2d 5732 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `
 ( f ` 
0 ) )  =  ( ( 2nd  |`  ( U. R  X.  U. S
) ) `  (
f `  1 )
) )
49 fvco3 5800 . . . . . . . . . . 11  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  0  e.  ( 0 [,] 1
) )  ->  (
( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( f `  0
) ) )
5028, 29, 49sylancl 644 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 )  =  ( ( 2nd  |`  ( U. R  X.  U. S
) ) `  (
f `  0 )
) )
51 fvco3 5800 . . . . . . . . . . 11  |-  ( ( f : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  1  e.  ( 0 [,] 1
) )  ->  (
( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  1 )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( f `  1
) ) )
5228, 32, 51sylancl 644 . . . . . . . . . 10  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 1 )  =  ( ( 2nd  |`  ( U. R  X.  U. S
) ) `  (
f `  1 )
) )
5348, 50, 523eqtr4d 2478 . . . . . . . . 9  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 )  =  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `  1
) )
54 sconpht 24916 . . . . . . . . 9  |-  ( ( S  e. SCon  /\  (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  S )  /\  (
( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 )  =  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 1 ) )  ->  ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) (  ~=ph  `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) )
5543, 47, 53, 54syl3anc 1184 . . . . . . . 8  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( 
~=ph  `  S ) ( ( 0 [,] 1
)  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) )
56 isphtpc 19019 . . . . . . . 8  |-  ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) (  ~=ph  `  S
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } )  <->  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  S )  /\  (
( 0 [,] 1
)  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } )  e.  ( II  Cn  S )  /\  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  =/=  (/) ) )
5755, 56sylib 189 . . . . . . 7  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f )  e.  ( II  Cn  S )  /\  (
( 0 [,] 1
)  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } )  e.  ( II  Cn  S )  /\  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  =/=  (/) ) )
5857simp3d 971 . . . . . 6  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  =/=  (/) )
59 n0 3637 . . . . . 6  |-  ( ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  S
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  =/=  (/)  <->  E. h  h  e.  ( (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) ) )
6058, 59sylib 189 . . . . 5  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  E. h  h  e.  ( (
( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) ) )
61 eeanv 1937 . . . . . 6  |-  ( E. g E. h ( g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) )  <-> 
( E. g  g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  R )
( ( 0 [,] 1 )  X.  {
( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  /\  E. h  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) ) ) )
628adantr 452 . . . . . . . . 9  |-  ( ( ( ( R  e. SCon  /\  S  e. SCon )  /\  ( f  e.  ( II  Cn  ( R 
tX  S ) )  /\  ( f ` 
0 )  =  ( f `  1 ) ) )  /\  (
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) ) )  ->  R  e.  Top )
6313adantr 452 . . . . . . . . 9  |-  ( ( ( ( R  e. SCon  /\  S  e. SCon )  /\  ( f  e.  ( II  Cn  ( R 
tX  S ) )  /\  ( f ` 
0 )  =  ( f `  1 ) ) )  /\  (
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) ) )  ->  S  e.  Top )
646adantr 452 . . . . . . . . 9  |-  ( ( ( ( R  e. SCon  /\  S  e. SCon )  /\  ( f  e.  ( II  Cn  ( R 
tX  S ) )  /\  ( f ` 
0 )  =  ( f `  1 ) ) )  /\  (
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) ) )  ->  f  e.  ( II  Cn  ( R  tX  S ) ) )
65 eqid 2436 . . . . . . . . 9  |-  ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f )  =  ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f )
66 eqid 2436 . . . . . . . . 9  |-  ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f )
67 simprl 733 . . . . . . . . 9  |-  ( ( ( ( R  e. SCon  /\  S  e. SCon )  /\  ( f  e.  ( II  Cn  ( R 
tX  S ) )  /\  ( f ` 
0 )  =  ( f `  1 ) ) )  /\  (
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) ) )  ->  g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  R ) ( ( 0 [,] 1 )  X.  { ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) )
68 simprr 734 . . . . . . . . 9  |-  ( ( ( ( R  e. SCon  /\  S  e. SCon )  /\  ( f  e.  ( II  Cn  ( R 
tX  S ) )  /\  ( f ` 
0 )  =  ( f `  1 ) ) )  /\  (
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) ) )  ->  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) )
6962, 63, 64, 65, 66, 67, 68txsconlem 24927 . . . . . . . 8  |-  ( ( ( ( R  e. SCon  /\  S  e. SCon )  /\  ( f  e.  ( II  Cn  ( R 
tX  S ) )  /\  ( f ` 
0 )  =  ( f `  1 ) ) )  /\  (
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) ) )  ->  f (  ~=ph  `  ( R  tX  S
) ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )
7069ex 424 . . . . . . 7  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( (
g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  R
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) ) )  ->  f (  ~=ph  `  ( R  tX  S
) ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ) )
7170exlimdvv 1647 . . . . . 6  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( E. g E. h ( g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  R )
( ( 0 [,] 1 )  X.  {
( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) `  0
) } ) )  /\  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  S
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) ) )  -> 
f (  ~=ph  `  ( R  tX  S ) ) ( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ) )
7261, 71syl5bir 210 . . . . 5  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  ( ( E. g  g  e.  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  f ) ( PHtpy `  R ) ( ( 0 [,] 1 )  X.  { ( ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  f
) `  0 ) } ) )  /\  E. h  h  e.  ( ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  f
) ( PHtpy `  S
) ( ( 0 [,] 1 )  X. 
{ ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  f ) `
 0 ) } ) ) )  -> 
f (  ~=ph  `  ( R  tX  S ) ) ( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ) )
7342, 60, 72mp2and 661 . . . 4  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  (
f  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( f `  0
)  =  ( f `
 1 ) ) )  ->  f (  ~=ph  `  ( R  tX  S
) ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) )
7473expr 599 . . 3  |-  ( ( ( R  e. SCon  /\  S  e. SCon )  /\  f  e.  ( II  Cn  ( R  tX  S ) ) )  ->  ( (
f `  0 )  =  ( f ` 
1 )  ->  f
(  ~=ph  `  ( R  tX  S ) ) ( ( 0 [,] 1
)  X.  { ( f `  0 ) } ) ) )
7574ralrimiva 2789 . 2  |-  ( ( R  e. SCon  /\  S  e. SCon )  ->  A. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  ( f `  1 )  ->  f (  ~=ph  `  ( R  tX  S
) ) ( ( 0 [,] 1 )  X.  { ( f `
 0 ) } ) ) )
76 isscon 24913 . 2  |-  ( ( R  tX  S )  e. SCon 
<->  ( ( R  tX  S )  e. PCon  /\  A. f  e.  ( II 
Cn  ( R  tX  S ) ) ( ( f `  0
)  =  ( f `
 1 )  -> 
f (  ~=ph  `  ( R  tX  S ) ) ( ( 0 [,] 1 )  X.  {
( f `  0
) } ) ) ) )
774, 75, 76sylanbrc 646 1  |-  ( ( R  e. SCon  /\  S  e. SCon )  ->  ( R  tX  S )  e. SCon )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   (/)c0 3628   {csn 3814   U.cuni 4015   class class class wbr 4212    X. cxp 4876    |` cres 4880    o. ccom 4882   -->wf 5450   ` cfv 5454  (class class class)co 6081   1stc1st 6347   2ndc2nd 6348   0cc0 8990   1c1 8991   [,]cicc 10919   Topctop 16958  TopOnctopon 16959    Cn ccn 17288    tX ctx 17592   IIcii 18905   PHtpycphtpy 18993    ~=ph cphtpc 18994  PConcpcon 24906  SConcscon 24907
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-icc 10923  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-topgen 13667  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-top 16963  df-bases 16965  df-topon 16966  df-cn 17291  df-cnp 17292  df-tx 17594  df-ii 18907  df-htpy 18995  df-phtpy 18996  df-phtpc 19017  df-pcon 24908  df-scon 24909
  Copyright terms: Public domain W3C validator