MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txss12 Unicode version

Theorem txss12 17300
Description: Subset property of the topological product. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txss12  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )

Proof of Theorem txss12
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . . 5  |-  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  =  ran  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )
21txbasex 17261 . . . 4  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V )
32adantr 451 . . 3  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) )  e.  _V )
4 resss 4979 . . . . . 6  |-  ( ( x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) )
5 resmpt2 5942 . . . . . . 7  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C
) )  =  ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) ) )
65sseq1d 3205 . . . . . 6  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( ( ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  |`  ( A  X.  C
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) )  <->  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) ) )
74, 6mpbii 202 . . . . 5  |-  ( ( A  C_  B  /\  C  C_  D )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
87adantl 452 . . . 4  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  (
x  e.  B , 
y  e.  D  |->  ( x  X.  y ) ) )
9 rnss 4907 . . . 4  |-  ( ( x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  C_  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
108, 9syl 15 . . 3  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  ->  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) )  C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y
) ) )
11 tgss 16706 . . 3  |-  ( ( ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) )  e. 
_V  /\  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) 
C_  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) )  ->  ( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y
) ) )  C_  ( topGen `  ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
123, 10, 11syl2anc 642 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( topGen `  ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) )  C_  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
13 ssexg 4160 . . . . 5  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
14 ssexg 4160 . . . . 5  |-  ( ( C  C_  D  /\  D  e.  W )  ->  C  e.  _V )
15 eqid 2283 . . . . . 6  |-  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )  =  ran  (
x  e.  A , 
y  e.  C  |->  ( x  X.  y ) )
1615txval 17259 . . . . 5  |-  ( ( A  e.  _V  /\  C  e.  _V )  ->  ( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1713, 14, 16syl2an 463 . . . 4  |-  ( ( ( A  C_  B  /\  B  e.  V
)  /\  ( C  C_  D  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1817an4s 799 . . 3  |-  ( ( ( A  C_  B  /\  C  C_  D )  /\  ( B  e.  V  /\  D  e.  W ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
1918ancoms 439 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  =  ( topGen ` 
ran  ( x  e.  A ,  y  e.  C  |->  ( x  X.  y ) ) ) )
201txval 17259 . . 3  |-  ( ( B  e.  V  /\  D  e.  W )  ->  ( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
2120adantr 451 . 2  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( B  tX  D
)  =  ( topGen ` 
ran  ( x  e.  B ,  y  e.  D  |->  ( x  X.  y ) ) ) )
2212, 19, 213sstr4d 3221 1  |-  ( ( ( B  e.  V  /\  D  e.  W
)  /\  ( A  C_  B  /\  C  C_  D ) )  -> 
( A  tX  C
)  C_  ( B  tX  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152    X. cxp 4687   ran crn 4690    |` cres 4691   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   topGenctg 13342    tX ctx 17255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-topgen 13344  df-tx 17257
  Copyright terms: Public domain W3C validator