MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txswaphmeo Structured version   Unicode version

Theorem txswaphmeo 17839
Description: There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K ) 
Homeo  ( K  tX  J
) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, Y, y

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 445 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  (TopOn `  X ) )
2 simpr 449 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  (TopOn `  Y ) )
31, 2cnmpt2nd 17703 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K )  Cn  K
) )
41, 2cnmpt1st 17702 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K )  Cn  J
) )
51, 2, 3, 4cnmpt2t 17707 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )  Cn  ( K  tX  J ) ) )
6 opelxpi 4912 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
76ancoms 441 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
87adantl 454 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
98ralrimivva 2800 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X ) )
10 eqid 2438 . . . . . . 7  |-  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )
1110fmpt2 6420 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X )  <-> 
( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
129, 11sylib 190 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
13 opelxpi 4912 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1413ancoms 441 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1514adantl 454 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( y  e.  Y  /\  x  e.  X ) )  ->  <. x ,  y >.  e.  ( X  X.  Y
) )
1615ralrimivva 2800 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y ) )
17 eqid 2438 . . . . . . 7  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1817fmpt2 6420 . . . . . 6  |-  ( A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y )  <-> 
( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )
1916, 18sylib 190 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )
20 txswaphmeolem 17838 . . . . . 6  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )
21 txswaphmeolem 17838 . . . . . 6  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
22 fcof1o 6028 . . . . . 6  |-  ( ( ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )  /\  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )  /\  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y
) ) ) )  ->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
) ) )
2320, 21, 22mpanr12 668 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2412, 19, 23syl2anc 644 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2524simprd 451 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )
262, 1cnmpt2nd 17703 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  x )  e.  ( ( K  tX  J )  Cn  J
) )
272, 1cnmpt1st 17702 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  y )  e.  ( ( K  tX  J )  Cn  K
) )
282, 1, 26, 27cnmpt2t 17707 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  e.  (
( K  tX  J
)  Cn  ( J 
tX  K ) ) )
2925, 28eqeltrd 2512 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( K 
tX  J )  Cn  ( J  tX  K
) ) )
30 ishmeo 17793 . 2  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( J 
tX  K )  Homeo  ( K  tX  J ) )  <->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K
)  Cn  ( K 
tX  J ) )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( K  tX  J
)  Cn  ( J 
tX  K ) ) ) )
315, 29, 30sylanbrc 647 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K ) 
Homeo  ( K  tX  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   <.cop 3819    _I cid 4495    X. cxp 4878   `'ccnv 4879    |` cres 4882    o. ccom 4884   -->wf 5452   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085  TopOnctopon 16961    Cn ccn 17290    tX ctx 17594    Homeo chmeo 17787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-map 7022  df-topgen 13669  df-top 16965  df-bases 16967  df-topon 16968  df-cn 17293  df-tx 17596  df-hmeo 17789
  Copyright terms: Public domain W3C validator