MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txswaphmeolem Structured version   Unicode version

Theorem txswaphmeolem 17836
Description: Show inverse for the "swap components" operation on a cross product. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeolem  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Distinct variable groups:    x, y, X    x, Y, y

Proof of Theorem txswaphmeolem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opelxpi 4910 . . . . . 6  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
21ancoms 440 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
32adantl 453 . . . 4  |-  ( (  T.  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
4 eqidd 2437 . . . 4  |-  (  T. 
->  ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )
5 sneq 3825 . . . . . . . . . 10  |-  ( z  =  <. y ,  x >.  ->  { z }  =  { <. y ,  x >. } )
65cnveqd 5048 . . . . . . . . 9  |-  ( z  =  <. y ,  x >.  ->  `' { z }  =  `' { <. y ,  x >. } )
76unieqd 4026 . . . . . . . 8  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  U. `' { <. y ,  x >. } )
8 opswap 5356 . . . . . . . 8  |-  U. `' { <. y ,  x >. }  =  <. x ,  y >.
97, 8syl6eq 2484 . . . . . . 7  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  <. x ,  y >. )
109mpt2mpt 6165 . . . . . 6  |-  ( z  e.  ( Y  X.  X )  |->  U. `' { z } )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1110eqcomi 2440 . . . . 5  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( z  e.  ( Y  X.  X
)  |->  U. `' { z } )
1211a1i 11 . . . 4  |-  (  T. 
->  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
)  =  ( z  e.  ( Y  X.  X )  |->  U. `' { z } ) )
133, 4, 12, 9fmpt2co 6430 . . 3  |-  (  T. 
->  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y >. )
)
1413trud 1332 . 2  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |-> 
<. x ,  y >.
)
15 id 20 . . 3  |-  ( z  =  <. x ,  y
>.  ->  z  =  <. x ,  y >. )
1615mpt2mpt 6165 . 2  |-  ( z  e.  ( X  X.  Y )  |->  z )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y
>. )
17 mptresid 5195 . 2  |-  ( z  e.  ( X  X.  Y )  |->  z )  =  (  _I  |`  ( X  X.  Y ) )
1814, 16, 173eqtr2i 2462 1  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725   {csn 3814   <.cop 3817   U.cuni 4015    e. cmpt 4266    _I cid 4493    X. cxp 4876   `'ccnv 4877    |` cres 4880    o. ccom 4882    e. cmpt2 6083
This theorem is referenced by:  txswaphmeo  17837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-fv 5462  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350
  Copyright terms: Public domain W3C validator