MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtopon Unicode version

Theorem txtopon 17302
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )

Proof of Theorem txtopon
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 16680 . . 3  |-  ( R  e.  (TopOn `  X
)  ->  R  e.  Top )
2 topontop 16680 . . 3  |-  ( S  e.  (TopOn `  Y
)  ->  S  e.  Top )
3 txtop 17280 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 463 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  Top )
5 eqid 2296 . . . . 5  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
6 eqid 2296 . . . . 5  |-  U. R  =  U. R
7 eqid 2296 . . . . 5  |-  U. S  =  U. S
85, 6, 7txuni2 17276 . . . 4  |-  ( U. R  X.  U. S )  =  U. ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
9 toponuni 16681 . . . . 5  |-  ( R  e.  (TopOn `  X
)  ->  X  =  U. R )
10 toponuni 16681 . . . . 5  |-  ( S  e.  (TopOn `  Y
)  ->  Y  =  U. S )
11 xpeq12 4724 . . . . 5  |-  ( ( X  =  U. R  /\  Y  =  U. S )  ->  ( X  X.  Y )  =  ( U. R  X.  U. S ) )
129, 10, 11syl2an 463 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  ( U. R  X.  U. S ) )
135txbasex 17277 . . . . 5  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  _V )
14 unitg 16721 . . . . 5  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  _V  ->  U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) ) )  = 
U. ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )
1513, 14syl 15 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  U. ( topGen `
 ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  =  U. ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) ) )
168, 12, 153eqtr4a 2354 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
175txval 17275 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  =  (
topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
1817unieqd 3854 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  U. ( R  tX  S )  = 
U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) ) ) )
1916, 18eqtr4d 2331 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  U. ( R  tX  S ) )
20 istopon 16679 . 2  |-  ( ( R  tX  S )  e.  (TopOn `  ( X  X.  Y ) )  <-> 
( ( R  tX  S )  e.  Top  /\  ( X  X.  Y
)  =  U. ( R  tX  S ) ) )
214, 19, 20sylanbrc 645 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   U.cuni 3843    X. cxp 4703   ran crn 4706   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   topGenctg 13358   Topctop 16647  TopOnctopon 16648    tX ctx 17271
This theorem is referenced by:  txuni  17303  txcls  17315  tx1cn  17319  tx2cn  17320  txcnp  17330  txcnmpt  17334  txindis  17344  txdis1cn  17345  txlm  17358  lmcn2  17359  xkococn  17370  cnmpt12  17377  cnmpt2c  17380  cnmpt21  17381  cnmpt2t  17383  cnmpt22  17384  cnmpt22f  17385  cnmpt2res  17387  cnmptcom  17388  cnmpt2k  17398  ptunhmeo  17515  xpstopnlem1  17516  xkocnv  17521  xkohmeo  17522  txflf  17717  flfcnp2  17718  cnmpt2plusg  17787  tmdcn2  17788  indistgp  17799  clssubg  17807  divstgplem  17819  prdstmdd  17822  tsmsadd  17845  cnmpt2vsca  17893  txmetcn  18110  cnmpt2ds  18364  fsum2cn  18391  cnmpt2pc  18442  htpyco2  18493  phtpyco2  18504  cnmpt2ip  18691  limccnp2  19258  dvcnp2  19285  dvaddbr  19303  dvmulbr  19304  dvcobr  19311  lhop1lem  19376  taylthlem2  19769  cxpcn3  20104  tpr2tp  23302  txsconlem  23786  txscon  23787  cvmlift2lem11  23859  cvmlift2lem12  23860
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-tx 17273
  Copyright terms: Public domain W3C validator