MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni Structured version   Unicode version

Theorem txuni 17629
Description: The underlying set of the product of two topologies. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
txuni.1  |-  X  = 
U. R
txuni.2  |-  Y  = 
U. S
Assertion
Ref Expression
txuni  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y
)  =  U. ( R  tX  S ) )

Proof of Theorem txuni
StepHypRef Expression
1 txuni.1 . . . 4  |-  X  = 
U. R
21toptopon 17003 . . 3  |-  ( R  e.  Top  <->  R  e.  (TopOn `  X ) )
3 txuni.2 . . . 4  |-  Y  = 
U. S
43toptopon 17003 . . 3  |-  ( S  e.  Top  <->  S  e.  (TopOn `  Y ) )
5 txtopon 17628 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
62, 4, 5syl2anb 467 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) ) )
7 toponuni 16997 . 2  |-  ( ( R  tX  S )  e.  (TopOn `  ( X  X.  Y ) )  ->  ( X  X.  Y )  =  U. ( R  tX  S ) )
86, 7syl 16 1  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y
)  =  U. ( R  tX  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   U.cuni 4017    X. cxp 4879   ` cfv 5457  (class class class)co 6084   Topctop 16963  TopOnctopon 16964    tX ctx 17597
This theorem is referenced by:  txunii  17630  txcld  17640  neitx  17644  uptx  17662  txcn  17663  txdis  17669  txnlly  17674  txcmp  17680  txcmpb  17681  hausdiag  17682  txhaus  17684  tx1stc  17687  txkgen  17689  txcon  17726  imasnopn  17727  imasncld  17728  imasncls  17729  utop2nei  18285  utop3cls  18286  txpcon  24924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-topgen 13672  df-top 16968  df-bases 16970  df-topon 16971  df-tx 17599
  Copyright terms: Public domain W3C validator