MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txval Unicode version

Theorem txval 17510
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
Assertion
Ref Expression
txval  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen `  B ) )
Distinct variable groups:    x, y, R    x, S, y
Allowed substitution hints:    B( x, y)    V( x, y)    W( x, y)

Proof of Theorem txval
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2900 . 2  |-  ( R  e.  V  ->  R  e.  _V )
2 elex 2900 . 2  |-  ( S  e.  W  ->  S  e.  _V )
3 mpt2eq12 6066 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) )  =  ( x  e.  R , 
y  e.  S  |->  ( x  X.  y ) ) )
43rneqd 5030 . . . . 5  |-  ( ( r  =  R  /\  s  =  S )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) ) )
5 txval.1 . . . . 5  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
64, 5syl6eqr 2430 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  B )
76fveq2d 5665 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )  =  ( topGen `  B ) )
8 df-tx 17508 . . 3  |-  tX  =  ( r  e.  _V ,  s  e.  _V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
9 fvex 5675 . . 3  |-  ( topGen `  B )  e.  _V
107, 8, 9ovmpt2a 6136 . 2  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R  tX  S
)  =  ( topGen `  B ) )
111, 2, 10syl2an 464 1  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   _Vcvv 2892    X. cxp 4809   ran crn 4812   ` cfv 5387  (class class class)co 6013    e. cmpt2 6015   topGenctg 13585    tX ctx 17506
This theorem is referenced by:  eltx  17514  txtop  17515  txtopon  17537  txopn  17548  txss12  17551  txbasval  17552  txcnp  17566  txcnmpt  17570  txrest  17577  txlm  17594  tx2ndc  17597  txflf  17952  mbfimaopnlem  19407
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pr 4337
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-iota 5351  df-fun 5389  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-tx 17508
  Copyright terms: Public domain W3C validator