MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12 Unicode version

Theorem tz6.12 5583
Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
tz6.12  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Distinct variable groups:    y, F    y, A

Proof of Theorem tz6.12
StepHypRef Expression
1 df-br 4061 . 2  |-  ( A F y  <->  <. A , 
y >.  e.  F )
21eubii 2185 . 2  |-  ( E! y  A F y  <-> 
E! y <. A , 
y >.  e.  F )
3 tz6.12-1 5582 . 2  |-  ( ( A F y  /\  E! y  A F
y )  ->  ( F `  A )  =  y )
41, 2, 3syl2anbr 466 1  |-  ( (
<. A ,  y >.  e.  F  /\  E! y
<. A ,  y >.  e.  F )  ->  ( F `  A )  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   E!weu 2176   <.cop 3677   class class class wbr 4060   ` cfv 5292
This theorem is referenced by:  tz6.12f  5584  dfac5lem5  7799  tz6.12-afv  27186
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-rex 2583  df-v 2824  df-sbc 3026  df-un 3191  df-sn 3680  df-pr 3681  df-uni 3865  df-br 4061  df-iota 5256  df-fv 5300
  Copyright terms: Public domain W3C validator