MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12i Structured version   Unicode version

Theorem tz6.12i 5780
Description: Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
tz6.12i  |-  ( B  =/=  (/)  ->  ( ( F `  A )  =  B  ->  A F B ) )

Proof of Theorem tz6.12i
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fvex 5771 . . . . 5  |-  ( F `
 A )  e. 
_V
2 neeq1 2615 . . . . . . . 8  |-  ( ( F `  A )  =  y  ->  (
( F `  A
)  =/=  (/)  <->  y  =/=  (/) ) )
3 tz6.12-2 5748 . . . . . . . . . . 11  |-  ( -.  E! y  A F y  ->  ( F `  A )  =  (/) )
43necon1ai 2652 . . . . . . . . . 10  |-  ( ( F `  A )  =/=  (/)  ->  E! y  A F y )
5 tz6.12c 5779 . . . . . . . . . 10  |-  ( E! y  A F y  ->  ( ( F `
 A )  =  y  <->  A F y ) )
64, 5syl 16 . . . . . . . . 9  |-  ( ( F `  A )  =/=  (/)  ->  ( ( F `  A )  =  y  <->  A F y ) )
76biimpcd 217 . . . . . . . 8  |-  ( ( F `  A )  =  y  ->  (
( F `  A
)  =/=  (/)  ->  A F y ) )
82, 7sylbird 228 . . . . . . 7  |-  ( ( F `  A )  =  y  ->  (
y  =/=  (/)  ->  A F y ) )
98eqcoms 2445 . . . . . 6  |-  ( y  =  ( F `  A )  ->  (
y  =/=  (/)  ->  A F y ) )
10 neeq1 2615 . . . . . 6  |-  ( y  =  ( F `  A )  ->  (
y  =/=  (/)  <->  ( F `  A )  =/=  (/) ) )
11 breq2 4241 . . . . . 6  |-  ( y  =  ( F `  A )  ->  ( A F y  <->  A F
( F `  A
) ) )
129, 10, 113imtr3d 260 . . . . 5  |-  ( y  =  ( F `  A )  ->  (
( F `  A
)  =/=  (/)  ->  A F ( F `  A ) ) )
131, 12vtocle 3031 . . . 4  |-  ( ( F `  A )  =/=  (/)  ->  A F
( F `  A
) )
1413a1i 11 . . 3  |-  ( ( F `  A )  =  B  ->  (
( F `  A
)  =/=  (/)  ->  A F ( F `  A ) ) )
15 neeq1 2615 . . 3  |-  ( ( F `  A )  =  B  ->  (
( F `  A
)  =/=  (/)  <->  B  =/=  (/) ) )
16 breq2 4241 . . 3  |-  ( ( F `  A )  =  B  ->  ( A F ( F `  A )  <->  A F B ) )
1714, 15, 163imtr3d 260 . 2  |-  ( ( F `  A )  =  B  ->  ( B  =/=  (/)  ->  A F B ) )
1817com12 30 1  |-  ( B  =/=  (/)  ->  ( ( F `  A )  =  B  ->  A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    = wceq 1653   E!weu 2287    =/= wne 2605   (/)c0 3613   class class class wbr 4237   ` cfv 5483
This theorem is referenced by:  fvbr0  5781  fvclss  6009  dcomex  8358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-nul 4363
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-iota 5447  df-fv 5491
  Copyright terms: Public domain W3C validator