Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-1 Unicode version

Theorem tz7.44-1 6419
 Description: The value of at . Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1
tz7.44.2
tz7.44-1.3
Assertion
Ref Expression
tz7.44-1
Distinct variable groups:   ,   ,,   ,   ,   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem tz7.44-1
StepHypRef Expression
1 fveq2 5525 . . . 4
2 reseq2 4950 . . . . . 6
3 res0 4959 . . . . . 6
42, 3syl6eq 2331 . . . . 5
54fveq2d 5529 . . . 4
61, 5eqeq12d 2297 . . 3
7 tz7.44.2 . . 3
86, 7vtoclga 2849 . 2
9 0ex 4150 . . 3
10 iftrue 3571 . . . 4
11 tz7.44.1 . . . 4
12 tz7.44-1.3 . . . 4
1310, 11, 12fvmpt 5602 . . 3
149, 13ax-mp 8 . 2
158, 14syl6eq 2331 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1623   wcel 1684  cvv 2788  c0 3455  cif 3565  cuni 3827   cmpt 4077   wlim 4393   cdm 4689   crn 4690   cres 4691  cfv 5255 This theorem is referenced by:  rdg0  6434 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fv 5263
 Copyright terms: Public domain W3C validator