MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44lem1 Structured version   Unicode version

Theorem tz7.44lem1 6663
Description:  G is a function. Lemma for tz7.44-1 6664, tz7.44-2 6665, and tz7.44-3 6666. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
tz7.44lem1.1  |-  G  =  { <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
Assertion
Ref Expression
tz7.44lem1  |-  Fun  G
Distinct variable groups:    x, y    y, A    y, H
Allowed substitution hints:    A( x)    G( x, y)    H( x)

Proof of Theorem tz7.44lem1
StepHypRef Expression
1 funopab 5486 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }  <->  A. x E* y ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  (
x  =  (/)  \/  Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) )
2 fvex 5742 . . . 4  |-  ( H `
 ( x `  U. dom  x ) )  e.  _V
3 vex 2959 . . . . 5  |-  x  e. 
_V
4 rnexg 5131 . . . . 5  |-  ( x  e.  _V  ->  ran  x  e.  _V )
5 uniexg 4706 . . . . 5  |-  ( ran  x  e.  _V  ->  U.
ran  x  e.  _V )
63, 4, 5mp2b 10 . . . 4  |-  U. ran  x  e.  _V
7 nlim0 4639 . . . . . 6  |-  -.  Lim  (/)
8 dm0 5083 . . . . . . 7  |-  dom  (/)  =  (/)
9 limeq 4593 . . . . . . 7  |-  ( dom  (/)  =  (/)  ->  ( Lim 
dom  (/)  <->  Lim  (/) ) )
108, 9ax-mp 8 . . . . . 6  |-  ( Lim 
dom  (/)  <->  Lim  (/) )
117, 10mtbir 291 . . . . 5  |-  -.  Lim  dom  (/)
12 dmeq 5070 . . . . . . 7  |-  ( x  =  (/)  ->  dom  x  =  dom  (/) )
13 limeq 4593 . . . . . . 7  |-  ( dom  x  =  dom  (/)  ->  ( Lim  dom  x  <->  Lim  dom  (/) ) )
1412, 13syl 16 . . . . . 6  |-  ( x  =  (/)  ->  ( Lim 
dom  x  <->  Lim  dom  (/) ) )
1514biimpa 471 . . . . 5  |-  ( ( x  =  (/)  /\  Lim  dom  x )  ->  Lim  dom  (/) )
1611, 15mto 169 . . . 4  |-  -.  (
x  =  (/)  /\  Lim  dom  x )
172, 6, 16moeq3 3111 . . 3  |-  E* y
( ( x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) )
181, 17mpgbir 1559 . 2  |-  Fun  { <. x ,  y >.  |  ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
19 tz7.44lem1.1 . . 3  |-  G  =  { <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
2019funeqi 5474 . 2  |-  ( Fun 
G  <->  Fun  { <. x ,  y >.  |  ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  (
x  =  (/)  \/  Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) } )
2118, 20mpbir 201 1  |-  Fun  G
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    = wceq 1652    e. wcel 1725   E*wmo 2282   _Vcvv 2956   (/)c0 3628   U.cuni 4015   {copab 4265   Lim wlim 4582   dom cdm 4878   ran crn 4879   Fun wfun 5448   ` cfv 5454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-lim 4586  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fv 5462
  Copyright terms: Public domain W3C validator