MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44lem1 Unicode version

Theorem tz7.44lem1 6434
Description:  G is a function. Lemma for tz7.44-1 6435, tz7.44-2 6436, and tz7.44-3 6437. (Contributed by NM, 23-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Hypothesis
Ref Expression
tz7.44lem1.1  |-  G  =  { <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
Assertion
Ref Expression
tz7.44lem1  |-  Fun  G
Distinct variable groups:    x, y    y, A    y, H
Allowed substitution hints:    A( x)    G( x, y)    H( x)

Proof of Theorem tz7.44lem1
StepHypRef Expression
1 funopab 5303 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }  <->  A. x E* y ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  (
x  =  (/)  \/  Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) )
2 fvex 5555 . . . 4  |-  ( H `
 ( x `  U. dom  x ) )  e.  _V
3 vex 2804 . . . . 5  |-  x  e. 
_V
4 rnexg 4956 . . . . 5  |-  ( x  e.  _V  ->  ran  x  e.  _V )
5 uniexg 4533 . . . . 5  |-  ( ran  x  e.  _V  ->  U.
ran  x  e.  _V )
63, 4, 5mp2b 9 . . . 4  |-  U. ran  x  e.  _V
7 nlim0 4466 . . . . . 6  |-  -.  Lim  (/)
8 dm0 4908 . . . . . . 7  |-  dom  (/)  =  (/)
9 limeq 4420 . . . . . . 7  |-  ( dom  (/)  =  (/)  ->  ( Lim 
dom  (/)  <->  Lim  (/) ) )
108, 9ax-mp 8 . . . . . 6  |-  ( Lim 
dom  (/)  <->  Lim  (/) )
117, 10mtbir 290 . . . . 5  |-  -.  Lim  dom  (/)
12 dmeq 4895 . . . . . . 7  |-  ( x  =  (/)  ->  dom  x  =  dom  (/) )
13 limeq 4420 . . . . . . 7  |-  ( dom  x  =  dom  (/)  ->  ( Lim  dom  x  <->  Lim  dom  (/) ) )
1412, 13syl 15 . . . . . 6  |-  ( x  =  (/)  ->  ( Lim 
dom  x  <->  Lim  dom  (/) ) )
1514biimpa 470 . . . . 5  |-  ( ( x  =  (/)  /\  Lim  dom  x )  ->  Lim  dom  (/) )
1611, 15mto 167 . . . 4  |-  -.  (
x  =  (/)  /\  Lim  dom  x )
172, 6, 16moeq3 2955 . . 3  |-  E* y
( ( x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) )
181, 17mpgbir 1540 . 2  |-  Fun  { <. x ,  y >.  |  ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
19 tz7.44lem1.1 . . 3  |-  G  =  { <. x ,  y
>.  |  ( (
x  =  (/)  /\  y  =  A )  \/  ( -.  ( x  =  (/)  \/ 
Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) }
2019funeqi 5291 . 2  |-  ( Fun 
G  <->  Fun  { <. x ,  y >.  |  ( ( x  =  (/)  /\  y  =  A )  \/  ( -.  (
x  =  (/)  \/  Lim  dom  x )  /\  y  =  ( H `  ( x `  U. dom  x ) ) )  \/  ( Lim  dom  x  /\  y  =  U. ran  x ) ) } )
2118, 20mpbir 200 1  |-  Fun  G
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358    \/ w3o 933    = wceq 1632    e. wcel 1696   E*wmo 2157   _Vcvv 2801   (/)c0 3468   U.cuni 3843   {copab 4092   Lim wlim 4409   dom cdm 4705   ran crn 4706   Fun wfun 5265   ` cfv 5271
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-lim 4413  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fv 5279
  Copyright terms: Public domain W3C validator