MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48lem Structured version   Unicode version

Theorem tz7.48lem 6699
Description: A way of showing an ordinal function is one-to-one. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1  |-  F  Fn  On
Assertion
Ref Expression
tz7.48lem  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  ->  Fun  `' ( F  |`  A ) )
Distinct variable groups:    y, A, x    x, F, y    x, A

Proof of Theorem tz7.48lem
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r2al 2743 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
2 simpl 445 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  A )  ->  x  e.  A )
32anim1i 553 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  y  e.  x )  ->  (
x  e.  A  /\  y  e.  x )
)
43imim1i 57 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  x
)  ->  -.  ( F `  x )  =  ( F `  y ) )  -> 
( ( ( x  e.  A  /\  y  e.  A )  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
54exp3a 427 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  x
)  ->  -.  ( F `  x )  =  ( F `  y ) )  -> 
( ( x  e.  A  /\  y  e.  A )  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
652alimi 1570 . . . . . . 7  |-  ( A. x A. y ( ( x  e.  A  /\  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) )  ->  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
71, 6sylbi 189 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
8 r2al 2743 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
97, 8sylibr 205 . . . . 5  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x  e.  A  A. y  e.  A  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )
10 elequ1 1729 . . . . . . . . . . . 12  |-  ( y  =  w  ->  (
y  e.  x  <->  w  e.  x ) )
11 fveq2 5729 . . . . . . . . . . . . . 14  |-  ( y  =  w  ->  ( F `  y )  =  ( F `  w ) )
1211eqeq2d 2448 . . . . . . . . . . . . 13  |-  ( y  =  w  ->  (
( F `  x
)  =  ( F `
 y )  <->  ( F `  x )  =  ( F `  w ) ) )
1312notbid 287 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( -.  ( F `  x
)  =  ( F `
 y )  <->  -.  ( F `  x )  =  ( F `  w ) ) )
1410, 13imbi12d 313 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) )  <->  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) ) ) )
1514cbvralv 2933 . . . . . . . . . 10  |-  ( A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. w  e.  A  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) ) )
1615ralbii 2730 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. x  e.  A  A. w  e.  A  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) ) )
17 elequ2 1731 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
w  e.  x  <->  w  e.  z ) )
18 fveq2 5729 . . . . . . . . . . . . . 14  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
1918eqeq1d 2445 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
( F `  x
)  =  ( F `
 w )  <->  ( F `  z )  =  ( F `  w ) ) )
2019notbid 287 . . . . . . . . . . . 12  |-  ( x  =  z  ->  ( -.  ( F `  x
)  =  ( F `
 w )  <->  -.  ( F `  z )  =  ( F `  w ) ) )
2117, 20imbi12d 313 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) )  <->  ( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) ) ) )
2221ralbidv 2726 . . . . . . . . . 10  |-  ( x  =  z  ->  ( A. w  e.  A  ( w  e.  x  ->  -.  ( F `  x )  =  ( F `  w ) )  <->  A. w  e.  A  ( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) ) ) )
2322cbvralv 2933 . . . . . . . . 9  |-  ( A. x  e.  A  A. w  e.  A  (
w  e.  x  ->  -.  ( F `  x
)  =  ( F `
 w ) )  <->  A. z  e.  A  A. w  e.  A  ( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) ) )
24 elequ1 1729 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  (
w  e.  z  <->  x  e.  z ) )
25 fveq2 5729 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  ( F `  w )  =  ( F `  x ) )
2625eqeq2d 2448 . . . . . . . . . . . . . 14  |-  ( w  =  x  ->  (
( F `  z
)  =  ( F `
 w )  <->  ( F `  z )  =  ( F `  x ) ) )
2726notbid 287 . . . . . . . . . . . . 13  |-  ( w  =  x  ->  ( -.  ( F `  z
)  =  ( F `
 w )  <->  -.  ( F `  z )  =  ( F `  x ) ) )
2824, 27imbi12d 313 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( w  e.  z  ->  -.  ( F `  z )  =  ( F `  w ) )  <->  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) ) ) )
2928cbvralv 2933 . . . . . . . . . . 11  |-  ( A. w  e.  A  (
w  e.  z  ->  -.  ( F `  z
)  =  ( F `
 w ) )  <->  A. x  e.  A  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) ) )
3029ralbii 2730 . . . . . . . . . 10  |-  ( A. z  e.  A  A. w  e.  A  (
w  e.  z  ->  -.  ( F `  z
)  =  ( F `
 w ) )  <->  A. z  e.  A  A. x  e.  A  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) ) )
31 elequ2 1731 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  (
x  e.  z  <->  x  e.  y ) )
32 fveq2 5729 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  ( F `  z )  =  ( F `  y ) )
3332eqeq1d 2445 . . . . . . . . . . . . . 14  |-  ( z  =  y  ->  (
( F `  z
)  =  ( F `
 x )  <->  ( F `  y )  =  ( F `  x ) ) )
3433notbid 287 . . . . . . . . . . . . 13  |-  ( z  =  y  ->  ( -.  ( F `  z
)  =  ( F `
 x )  <->  -.  ( F `  y )  =  ( F `  x ) ) )
3531, 34imbi12d 313 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) )  <->  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) ) )
3635ralbidv 2726 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( A. x  e.  A  ( x  e.  z  ->  -.  ( F `  z )  =  ( F `  x ) )  <->  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) ) )
3736cbvralv 2933 . . . . . . . . . 10  |-  ( A. z  e.  A  A. x  e.  A  (
x  e.  z  ->  -.  ( F `  z
)  =  ( F `
 x ) )  <->  A. y  e.  A  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
3830, 37bitri 242 . . . . . . . . 9  |-  ( A. z  e.  A  A. w  e.  A  (
w  e.  z  ->  -.  ( F `  z
)  =  ( F `
 w ) )  <->  A. y  e.  A  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
3916, 23, 383bitri 264 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  <->  A. y  e.  A  A. x  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
40 ralcom2 2873 . . . . . . . 8  |-  ( A. y  e.  A  A. x  e.  A  (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
4139, 40sylbi 189 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  ->  A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) ) )
4241ancri 537 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  ->  ( A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
43 r19.26-2 2840 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  (
( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  <-> 
( A. x  e.  A  A. y  e.  A  ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) ) ) )
4442, 43sylibr 205 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
y  e.  x  ->  -.  ( F `  x
)  =  ( F `
 y ) )  ->  A. x  e.  A  A. y  e.  A  ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
459, 44syl 16 . . . 4  |-  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x  e.  A  A. y  e.  A  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )
46 fvres 5746 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
47 fvres 5746 . . . . . . . . . . 11  |-  ( y  e.  A  ->  (
( F  |`  A ) `
 y )  =  ( F `  y
) )
4846, 47eqeqan12d 2452 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  <->  ( F `  x )  =  ( F `  y ) ) )
4948ad2antrl 710 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
( x  e.  A  /\  y  e.  A
)  /\  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  <->  ( F `  x )  =  ( F `  y ) ) )
50 ssel 3343 . . . . . . . . . . . 12  |-  ( A 
C_  On  ->  ( x  e.  A  ->  x  e.  On ) )
51 ssel 3343 . . . . . . . . . . . 12  |-  ( A 
C_  On  ->  ( y  e.  A  ->  y  e.  On ) )
5250, 51anim12d 548 . . . . . . . . . . 11  |-  ( A 
C_  On  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  On  /\  y  e.  On ) ) )
53 pm3.48 808 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  ( ( x  e.  y  \/  y  e.  x )  ->  ( -.  ( F `  y
)  =  ( F `
 x )  \/ 
-.  ( F `  x )  =  ( F `  y ) ) ) )
54 oridm 502 . . . . . . . . . . . . . . 15  |-  ( ( -.  ( F `  x )  =  ( F `  y )  \/  -.  ( F `
 x )  =  ( F `  y
) )  <->  -.  ( F `  x )  =  ( F `  y ) )
55 eqcom 2439 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  x )  =  ( F `  y )  <->  ( F `  y )  =  ( F `  x ) )
5655notbii 289 . . . . . . . . . . . . . . . 16  |-  ( -.  ( F `  x
)  =  ( F `
 y )  <->  -.  ( F `  y )  =  ( F `  x ) )
5756orbi1i 508 . . . . . . . . . . . . . . 15  |-  ( ( -.  ( F `  x )  =  ( F `  y )  \/  -.  ( F `
 x )  =  ( F `  y
) )  <->  ( -.  ( F `  y )  =  ( F `  x )  \/  -.  ( F `  x )  =  ( F `  y ) ) )
5854, 57bitr3i 244 . . . . . . . . . . . . . 14  |-  ( -.  ( F `  x
)  =  ( F `
 y )  <->  ( -.  ( F `  y )  =  ( F `  x )  \/  -.  ( F `  x )  =  ( F `  y ) ) )
5953, 58syl6ibr 220 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  ( ( x  e.  y  \/  y  e.  x )  ->  -.  ( F `  x )  =  ( F `  y ) ) )
6059con2d 110 . . . . . . . . . . . 12  |-  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  ( ( F `
 x )  =  ( F `  y
)  ->  -.  (
x  e.  y  \/  y  e.  x ) ) )
61 eloni 4592 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  Ord  x )
62 eloni 4592 . . . . . . . . . . . . 13  |-  ( y  e.  On  ->  Ord  y )
63 ordtri3 4618 . . . . . . . . . . . . . 14  |-  ( ( Ord  x  /\  Ord  y )  ->  (
x  =  y  <->  -.  (
x  e.  y  \/  y  e.  x ) ) )
6463biimprd 216 . . . . . . . . . . . . 13  |-  ( ( Ord  x  /\  Ord  y )  ->  ( -.  ( x  e.  y  \/  y  e.  x
)  ->  x  =  y ) )
6561, 62, 64syl2an 465 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( -.  ( x  e.  y  \/  y  e.  x )  ->  x  =  y ) )
6660, 65syl9r 70 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
6752, 66syl6 32 . . . . . . . . . 10  |-  ( A 
C_  On  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) ) )
6867imp32 424 . . . . . . . . 9  |-  ( ( A  C_  On  /\  (
( x  e.  A  /\  y  e.  A
)  /\  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)
6949, 68sylbid 208 . . . . . . . 8  |-  ( ( A  C_  On  /\  (
( x  e.  A  /\  y  e.  A
)  /\  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )
7069exp32 590 . . . . . . 7  |-  ( A 
C_  On  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) ) )
7170a2d 25 . . . . . 6  |-  ( A 
C_  On  ->  ( ( ( x  e.  A  /\  y  e.  A
)  ->  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )  ->  ( (
x  e.  A  /\  y  e.  A )  ->  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) ) )
72712alimdv 1634 . . . . 5  |-  ( A 
C_  On  ->  ( A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  ( ( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) )  ->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( (
( F  |`  A ) `
 x )  =  ( ( F  |`  A ) `  y
)  ->  x  =  y ) ) ) )
73 r2al 2743 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A
)  ->  ( (
x  e.  y  ->  -.  ( F `  y
)  =  ( F `
 x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) ) ) )
74 r2al 2743 . . . . 5  |-  ( A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  A )  ->  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) )
7572, 73, 743imtr4g 263 . . . 4  |-  ( A 
C_  On  ->  ( A. x  e.  A  A. y  e.  A  (
( x  e.  y  ->  -.  ( F `  y )  =  ( F `  x ) )  /\  ( y  e.  x  ->  -.  ( F `  x )  =  ( F `  y ) ) )  ->  A. x  e.  A  A. y  e.  A  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) )
7645, 75syl5 31 . . 3  |-  ( A 
C_  On  ->  ( A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y )  ->  A. x  e.  A  A. y  e.  A  ( (
( F  |`  A ) `
 x )  =  ( ( F  |`  A ) `  y
)  ->  x  =  y ) ) )
7776imdistani 673 . 2  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  -> 
( A  C_  On  /\ 
A. x  e.  A  A. y  e.  A  ( ( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) ) )
78 tz7.48.1 . . . 4  |-  F  Fn  On
79 fnssres 5559 . . . 4  |-  ( ( F  Fn  On  /\  A  C_  On )  -> 
( F  |`  A )  Fn  A )
8078, 79mpan 653 . . 3  |-  ( A 
C_  On  ->  ( F  |`  A )  Fn  A
)
81 dffn2 5593 . . . 4  |-  ( ( F  |`  A )  Fn  A  <->  ( F  |`  A ) : A --> _V )
82 dff13 6005 . . . . . 6  |-  ( ( F  |`  A ) : A -1-1-> _V  <->  ( ( F  |`  A ) : A --> _V  /\  A. x  e.  A  A. y  e.  A  ( ( ( F  |`  A ) `  x )  =  ( ( F  |`  A ) `
 y )  ->  x  =  y )
) )
83 df-f1 5460 . . . . . 6  |-  ( ( F  |`  A ) : A -1-1-> _V  <->  ( ( F  |`  A ) : A --> _V  /\  Fun  `' ( F  |`  A )
) )
8482, 83bitr3i 244 . . . . 5  |-  ( ( ( F  |`  A ) : A --> _V  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  <-> 
( ( F  |`  A ) : A --> _V  /\  Fun  `' ( F  |`  A )
) )
8584simprbi 452 . . . 4  |-  ( ( ( F  |`  A ) : A --> _V  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  ->  Fun  `' ( F  |`  A ) )
8681, 85sylanb 460 . . 3  |-  ( ( ( F  |`  A )  Fn  A  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  ->  Fun  `' ( F  |`  A ) )
8780, 86sylan 459 . 2  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  A  (
( ( F  |`  A ) `  x
)  =  ( ( F  |`  A ) `  y )  ->  x  =  y ) )  ->  Fun  `' ( F  |`  A ) )
8877, 87syl 16 1  |-  ( ( A  C_  On  /\  A. x  e.  A  A. y  e.  x  -.  ( F `  x )  =  ( F `  y ) )  ->  Fun  `' ( F  |`  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   A.wral 2706   _Vcvv 2957    C_ wss 3321   Ord word 4581   Oncon0 4582   `'ccnv 4878    |` cres 4881   Fun wfun 5449    Fn wfn 5450   -->wf 5451   -1-1->wf1 5452   ` cfv 5455
This theorem is referenced by:  tz7.48-2  6700  tz7.49  6703  abianfp  6717  zorn2lem4  8380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-sbc 3163  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-res 4891  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fv 5463
  Copyright terms: Public domain W3C validator