MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.7 Unicode version

Theorem tz7.7 4418
Description: Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.)
Assertion
Ref Expression
tz7.7  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  e.  A  <->  ( B  C_  A  /\  B  =/= 
A ) ) )

Proof of Theorem tz7.7
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtr 4406 . . . 4  |-  ( Ord 
A  ->  Tr  A
)
2 ordfr 4407 . . . 4  |-  ( Ord 
A  ->  _E  Fr  A )
3 tz7.2 4377 . . . . 5  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
433exp 1150 . . . 4  |-  ( Tr  A  ->  (  _E  Fr  A  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) ) )
51, 2, 4sylc 56 . . 3  |-  ( Ord 
A  ->  ( B  e.  A  ->  ( B 
C_  A  /\  B  =/=  A ) ) )
65adantr 451 . 2  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) )
7 pssdifn0 3515 . . . . . 6  |-  ( ( B  C_  A  /\  B  =/=  A )  -> 
( A  \  B
)  =/=  (/) )
8 difss 3303 . . . . . . . . . . . 12  |-  ( A 
\  B )  C_  A
9 tz7.5 4413 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  ( A  \  B )  C_  A  /\  ( A  \  B )  =/=  (/) )  ->  E. x  e.  ( A  \  B ) ( ( A  \  B
)  i^i  x )  =  (/) )
108, 9mp3an2 1265 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  ( A  \  B )  =/=  (/) )  ->  E. x  e.  ( A  \  B
) ( ( A 
\  B )  i^i  x )  =  (/) )
11 eldifi 3298 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
12 trss 4122 . . . . . . . . . . . . . . . . . . 19  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
13 difin0ss 3520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  \  B
)  i^i  x )  =  (/)  ->  ( x  C_  A  ->  x  C_  B
) )
1413com12 27 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
C_  A  ->  (
( ( A  \  B )  i^i  x
)  =  (/)  ->  x  C_  B ) )
1511, 12, 14syl56 30 . . . . . . . . . . . . . . . . . 18  |-  ( Tr  A  ->  ( x  e.  ( A  \  B
)  ->  ( (
( A  \  B
)  i^i  x )  =  (/)  ->  x  C_  B
) ) )
161, 15syl 15 . . . . . . . . . . . . . . . . 17  |-  ( Ord 
A  ->  ( x  e.  ( A  \  B
)  ->  ( (
( A  \  B
)  i^i  x )  =  (/)  ->  x  C_  B
) ) )
1716ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  (
x  e.  ( A 
\  B )  -> 
( ( ( A 
\  B )  i^i  x )  =  (/)  ->  x  C_  B )
) )
1817imp32 422 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  x  C_  B
)
19 eleq1 2343 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  x  ->  (
y  e.  B  <->  x  e.  B ) )
2019biimpcd 215 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  B  ->  (
y  =  x  ->  x  e.  B )
)
21 eldifn 3299 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  ( A  \  B )  ->  -.  x  e.  B )
2220, 21nsyli 133 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  B  ->  (
x  e.  ( A 
\  B )  ->  -.  y  =  x
) )
2322imp 418 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  x  e.  ( A  \  B ) )  ->  -.  y  =  x
)
2423adantll 694 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) )  ->  -.  y  =  x )
2524adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  -.  y  =  x )
26 trel 4120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Tr  B  ->  ( (
x  e.  y  /\  y  e.  B )  ->  x  e.  B ) )
2726exp3acom23 1362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( Tr  B  ->  ( y  e.  B  ->  ( x  e.  y  ->  x  e.  B ) ) )
2827imp 418 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Tr  B  /\  y  e.  B )  ->  (
x  e.  y  ->  x  e.  B )
)
2928, 21nsyli 133 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Tr  B  /\  y  e.  B )  ->  (
x  e.  ( A 
\  B )  ->  -.  x  e.  y
) )
3029ex 423 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Tr  B  ->  ( y  e.  B  ->  ( x  e.  ( A  \  B )  ->  -.  x  e.  y )
) )
3130adantld 453 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Tr  B  ->  ( ( B  C_  A  /\  y  e.  B )  ->  (
x  e.  ( A 
\  B )  ->  -.  x  e.  y
) ) )
3231imp32 422 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Tr  B  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  -.  x  e.  y )
3332adantll 694 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  -.  x  e.  y )
34 ordwe 4405 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Ord 
A  ->  _E  We  A )
35 ssel2 3175 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  C_  A  /\  y  e.  B )  ->  y  e.  A )
3635, 11anim12i 549 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) )  ->  ( y  e.  A  /\  x  e.  A ) )
37 wecmpep 4385 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (  _E  We  A  /\  ( y  e.  A  /\  x  e.  A
) )  ->  (
y  e.  x  \/  y  =  x  \/  x  e.  y ) )
3834, 36, 37syl2an 463 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  A  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  (
y  e.  x  \/  y  =  x  \/  x  e.  y ) )
3938adantlr 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  (
y  e.  x  \/  y  =  x  \/  x  e.  y ) )
4025, 33, 39ecase23d 1285 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  y  e.  x )
4140exp44 596 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
y  e.  B  -> 
( x  e.  ( A  \  B )  ->  y  e.  x
) ) ) )
4241com34 77 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
x  e.  ( A 
\  B )  -> 
( y  e.  B  ->  y  e.  x ) ) ) )
4342imp31 421 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  x  e.  ( A  \  B ) )  -> 
( y  e.  B  ->  y  e.  x ) )
4443ssrdv 3185 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  x  e.  ( A  \  B ) )  ->  B  C_  x )
4544adantrr 697 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  B  C_  x
)
4618, 45eqssd 3196 . . . . . . . . . . . . . 14  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  x  =  B )
4711ad2antrl 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  x  e.  A
)
4846, 47eqeltrrd 2358 . . . . . . . . . . . . 13  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  B  e.  A
)
4948exp32 588 . . . . . . . . . . . 12  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  (
x  e.  ( A 
\  B )  -> 
( ( ( A 
\  B )  i^i  x )  =  (/)  ->  B  e.  A ) ) )
5049rexlimdv 2666 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  ( E. x  e.  ( A  \  B ) ( ( A  \  B
)  i^i  x )  =  (/)  ->  B  e.  A ) )
5110, 50syl5 28 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  (
( Ord  A  /\  ( A  \  B )  =/=  (/) )  ->  B  e.  A ) )
5251exp4b 590 . . . . . . . . 9  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  ( Ord  A  ->  ( ( A  \  B )  =/=  (/)  ->  B  e.  A
) ) ) )
5352com23 72 . . . . . . . 8  |-  ( ( Ord  A  /\  Tr  B )  ->  ( Ord  A  ->  ( B  C_  A  ->  ( ( A  \  B )  =/=  (/)  ->  B  e.  A
) ) ) )
5453adantrd 454 . . . . . . 7  |-  ( ( Ord  A  /\  Tr  B )  ->  (
( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
( A  \  B
)  =/=  (/)  ->  B  e.  A ) ) ) )
5554pm2.43i 43 . . . . . 6  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
( A  \  B
)  =/=  (/)  ->  B  e.  A ) ) )
567, 55syl7 63 . . . . 5  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
( B  C_  A  /\  B  =/=  A
)  ->  B  e.  A ) ) )
5756exp4a 589 . . . 4  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  ( B  C_  A  ->  ( B  =/=  A  ->  B  e.  A ) ) ) )
5857pm2.43d 44 . . 3  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  ( B  =/=  A  ->  B  e.  A ) ) )
5958imp3a 420 . 2  |-  ( ( Ord  A  /\  Tr  B )  ->  (
( B  C_  A  /\  B  =/=  A
)  ->  B  e.  A ) )
606, 59impbid 183 1  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  e.  A  <->  ( B  C_  A  /\  B  =/= 
A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    \/ w3o 933    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   Tr wtr 4113    _E cep 4303    Fr wfr 4349    We wwe 4351   Ord word 4391
This theorem is referenced by:  ordelssne  4419  dfon2  24148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395
  Copyright terms: Public domain W3C validator