MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem1 Unicode version

Theorem tz9.12lem1 7459
Description: Lemma for tz9.12 7462. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
tz9.12lem.1  |-  A  e. 
_V
tz9.12lem.2  |-  F  =  ( z  e.  _V  |->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) } )
Assertion
Ref Expression
tz9.12lem1  |-  ( F
" A )  C_  On
Distinct variable group:    z, v, A
Allowed substitution hints:    F( z, v)

Proof of Theorem tz9.12lem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imassrn 5025 . 2  |-  ( F
" A )  C_  ran  F
2 tz9.12lem.2 . . . 4  |-  F  =  ( z  e.  _V  |->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) } )
32rnmpt 4925 . . 3  |-  ran  F  =  { x  |  E. z  e.  _V  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v
) } }
4 id 19 . . . . . 6  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) } )
5 ssrab2 3258 . . . . . . 7  |-  { v  e.  On  |  z  e.  ( R1 `  v ) }  C_  On
6 vex 2791 . . . . . . . . 9  |-  x  e. 
_V
74, 6syl6eqelr 2372 . . . . . . . 8  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) }  e.  _V )
8 intex 4167 . . . . . . . 8  |-  ( { v  e.  On  | 
z  e.  ( R1
`  v ) }  =/=  (/)  <->  |^| { v  e.  On  |  z  e.  ( R1 `  v
) }  e.  _V )
97, 8sylibr 203 . . . . . . 7  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  { v  e.  On  | 
z  e.  ( R1
`  v ) }  =/=  (/) )
10 oninton 4591 . . . . . . 7  |-  ( ( { v  e.  On  |  z  e.  ( R1 `  v ) } 
C_  On  /\  { v  e.  On  |  z  e.  ( R1 `  v ) }  =/=  (/) )  ->  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  e.  On )
115, 9, 10sylancr 644 . . . . . 6  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) }  e.  On )
124, 11eqeltrd 2357 . . . . 5  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  x  e.  On )
1312rexlimivw 2663 . . . 4  |-  ( E. z  e.  _V  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v
) }  ->  x  e.  On )
1413abssi 3248 . . 3  |-  { x  |  E. z  e.  _V  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) } }  C_  On
153, 14eqsstri 3208 . 2  |-  ran  F  C_  On
161, 15sstri 3188 1  |-  ( F
" A )  C_  On
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   E.wrex 2544   {crab 2547   _Vcvv 2788    C_ wss 3152   (/)c0 3455   |^|cint 3862    e. cmpt 4077   Oncon0 4392   ran crn 4690   "cima 4692   ` cfv 5255   R1cr1 7434
This theorem is referenced by:  tz9.12lem2  7460  tz9.12lem3  7461
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator