Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.13 Unicode version

Theorem tz9.13 7463
 Description: Every set is well-founded, assuming the Axiom of Regularity. In other words, every set belongs to a layer of the cumulative hierarchy of sets. Proposition 9.13 of [TakeutiZaring] p. 78. (Contributed by NM, 23-Sep-2003.)
Hypothesis
Ref Expression
tz9.13.1
Assertion
Ref Expression
tz9.13
Distinct variable group:   ,

Proof of Theorem tz9.13
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.13.1 . . 3
2 setind 7419 . . . 4
3 ssel 3174 . . . . . . . 8
4 vex 2791 . . . . . . . . 9
5 eleq1 2343 . . . . . . . . . 10
65rexbidv 2564 . . . . . . . . 9
74, 6elab 2914 . . . . . . . 8
83, 7syl6ib 217 . . . . . . 7
98ralrimiv 2625 . . . . . 6
10 vex 2791 . . . . . . 7
1110tz9.12 7462 . . . . . 6
129, 11syl 15 . . . . 5
13 eleq1 2343 . . . . . . 7
1413rexbidv 2564 . . . . . 6
1510, 14elab 2914 . . . . 5
1612, 15sylibr 203 . . . 4
172, 16mpg 1535 . . 3
181, 17eleqtrri 2356 . 2
19 eleq1 2343 . . . 4
2019rexbidv 2564 . . 3
211, 20elab 2914 . 2
2218, 21mpbi 199 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1623   wcel 1684  cab 2269  wral 2543  wrex 2544  cvv 2788   wss 3152  con0 4392  cfv 5255  cr1 7434 This theorem is referenced by:  tz9.13g  7464 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-reg 7306  ax-inf2 7342 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-r1 7436
 Copyright terms: Public domain W3C validator