MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubicc2 Unicode version

Theorem ubicc2 10753
Description: The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
Assertion
Ref Expression
ubicc2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )

Proof of Theorem ubicc2
StepHypRef Expression
1 simp2 956 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  RR* )
2 simp3 957 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  <_  B )
3 xrleid 10484 . . 3  |-  ( B  e.  RR*  ->  B  <_  B )
433ad2ant2 977 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  <_  B )
5 elicc1 10700 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  e.  ( A [,] B )  <->  ( B  e.  RR*  /\  A  <_  B  /\  B  <_  B
) ) )
653adant3 975 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  ( B  e.  ( A [,] B )  <->  ( B  e.  RR*  /\  A  <_  B  /\  B  <_  B
) ) )
71, 2, 4, 6mpbir3and 1135 1  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    e. wcel 1684   class class class wbr 4023  (class class class)co 5858   RR*cxr 8866    <_ cle 8868   [,]cicc 10659
This theorem is referenced by:  iccpnfcnv  18442  oprpiece1res2  18450  ivthlem2  18812  ivth2  18815  ivthle  18816  ivthle2  18817  dyadmaxlem  18952  cmvth  19338  mvth  19339  dvlip  19340  c1liplem1  19343  dvgt0lem1  19349  lhop1lem  19360  dvcnvrelem1  19364  dvcvx  19367  dvfsumle  19368  dvfsumge  19369  dvfsumabs  19370  dvfsumlem2  19374  ftc2  19391  ftc2ditglem  19392  itgparts  19394  itgsubstlem  19395  efcvx  19825  pige3  19885  logccv  20010  loglesqr  20098  pntlem3  20758  eliccioo  23115  xrge0iifcnv  23315  lmxrge0  23375  esumpinfval  23441  hashf2  23452  esumcvg  23454  cvmliftlem7  23822  cvmliftlem10  23825  areacirc  24931  intvconlem1  25703  ivthALT  26258  itgsin0pilem1  27744
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-icc 10663
  Copyright terms: Public domain W3C validator