Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ubpar Unicode version

Theorem ubpar 25364
Description: If  U is an upper bound of  A and  B 
C_  A then  U is an upper bound of  B. Bourbaki E.III.9 n 8. (Contributed by FL, 23-May-2011.)
Assertion
Ref Expression
ubpar  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  ( U  e.  ( R  ub  A )  ->  U  e.  ( R  ub  B
) ) )

Proof of Theorem ubpar
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2296 . . . . 5  |-  dom  R  =  dom  R
21puub2 25361 . . . 4  |-  ( ( R  e. PresetRel  /\  A  e.  C )  ->  ( U  e.  ( R  ub  A )  <->  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) ) )
32biimpd 198 . . 3  |-  ( ( R  e. PresetRel  /\  A  e.  C )  ->  ( U  e.  ( R  ub  A )  ->  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) ) )
433adant3 975 . 2  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  ( U  e.  ( R  ub  A )  ->  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) ) )
5 simprl 732 . . . 4  |-  ( ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  /\  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) )  ->  U  e.  dom  R )
6 ssralv 3250 . . . . . . . 8  |-  ( B 
C_  A  ->  ( A. x  e.  A  x R U  ->  A. x  e.  B  x R U ) )
763ad2ant3 978 . . . . . . 7  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  ( A. x  e.  A  x R U  ->  A. x  e.  B  x R U ) )
87com12 27 . . . . . 6  |-  ( A. x  e.  A  x R U  ->  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  A. x  e.  B  x R U ) )
98adantl 452 . . . . 5  |-  ( ( U  e.  dom  R  /\  A. x  e.  A  x R U )  -> 
( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  A. x  e.  B  x R U ) )
109impcom 419 . . . 4  |-  ( ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  /\  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) )  ->  A. x  e.  B  x R U )
11 simp1 955 . . . . . . 7  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  R  e. PresetRel )
12 ssexg 4176 . . . . . . . . 9  |-  ( ( B  C_  A  /\  A  e.  C )  ->  B  e.  _V )
1312ancoms 439 . . . . . . . 8  |-  ( ( A  e.  C  /\  B  C_  A )  ->  B  e.  _V )
14133adant1 973 . . . . . . 7  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  B  e.  _V )
1511, 14jca 518 . . . . . 6  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  ( R  e. PresetRel  /\  B  e. 
_V ) )
1615adantr 451 . . . . 5  |-  ( ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  /\  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) )  ->  ( R  e. PresetRel  /\  B  e.  _V )
)
171puub2 25361 . . . . 5  |-  ( ( R  e. PresetRel  /\  B  e. 
_V )  ->  ( U  e.  ( R  ub  B )  <->  ( U  e.  dom  R  /\  A. x  e.  B  x R U ) ) )
1816, 17syl 15 . . . 4  |-  ( ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  /\  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) )  ->  ( U  e.  ( R  ub  B
)  <->  ( U  e. 
dom  R  /\  A. x  e.  B  x R U ) ) )
195, 10, 18mpbir2and 888 . . 3  |-  ( ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  /\  ( U  e.  dom  R  /\  A. x  e.  A  x R U ) )  ->  U  e.  ( R  ub  B ) )
2019ex 423 . 2  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  (
( U  e.  dom  R  /\  A. x  e.  A  x R U )  ->  U  e.  ( R  ub  B
) ) )
214, 20syld 40 1  |-  ( ( R  e. PresetRel  /\  A  e.  C  /\  B  C_  A )  ->  ( U  e.  ( R  ub  A )  ->  U  e.  ( R  ub  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165   class class class wbr 4039   dom cdm 4705  (class class class)co 5874  PresetRelcpresetrel 25318    ub cub 25321
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-prs 25326  df-ub 25356
  Copyright terms: Public domain W3C validator