MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem1 Structured version   Unicode version

Theorem ubthlem1 22364
Description: Lemma for ubth 22367. The function  A exhibits a countable collection of sets that are closed, being the inverse image under  t of the closed ball of radius  k, and by assumption they cover  X. Thus, by the Baire Category theorem bcth2 19275, for some  n the set  A `  n has an interior, meaning that there is a closed ball  { z  e.  X  |  ( y D z )  <_  r } in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1  |-  X  =  ( BaseSet `  U )
ubth.2  |-  N  =  ( normCV `  W )
ubthlem.3  |-  D  =  ( IndMet `  U )
ubthlem.4  |-  J  =  ( MetOpen `  D )
ubthlem.5  |-  U  e. 
CBan
ubthlem.6  |-  W  e.  NrmCVec
ubthlem.7  |-  ( ph  ->  T  C_  ( U  BLnOp  W ) )
ubthlem.8  |-  ( ph  ->  A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `
 x ) )  <_  c )
ubthlem.9  |-  A  =  ( k  e.  NN  |->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
Assertion
Ref Expression
ubthlem1  |-  ( ph  ->  E. n  e.  NN  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) )
Distinct variable groups:    k, c, n, r, x, y, z, A    t, c, D, k, n, r, x, z    k, J, n   
y, t, J, x    N, c, k, n, r, t, x, y, z    ph, c, k, n, r, t, x, y    T, c, k, n, r, t, x, y, z    U, c, n, r, t, x, y, z    W, c, n, r, t, x, y    X, c, k, n, r, t, x, y, z
Allowed substitution hints:    ph( z)    A( t)    D( y)    U( k)    J( z, r, c)    W( z, k)

Proof of Theorem ubthlem1
StepHypRef Expression
1 rzal 3721 . . . . . . . . 9  |-  ( T  =  (/)  ->  A. t  e.  T  ( N `  ( t `  z
) )  <_  k
)
21ralrimivw 2782 . . . . . . . 8  |-  ( T  =  (/)  ->  A. z  e.  X  A. t  e.  T  ( N `  ( t `  z
) )  <_  k
)
3 rabid2 2877 . . . . . . . 8  |-  ( X  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z
) )  <_  k } 
<-> 
A. z  e.  X  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k )
42, 3sylibr 204 . . . . . . 7  |-  ( T  =  (/)  ->  X  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
54eqcomd 2440 . . . . . 6  |-  ( T  =  (/)  ->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  =  X )
65eleq1d 2501 . . . . 5  |-  ( T  =  (/)  ->  ( { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k }  e.  ( Clsd `  J )  <->  X  e.  ( Clsd `  J
) ) )
7 iinrab 4145 . . . . . . 7  |-  ( T  =/=  (/)  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `
 ( t `  z ) )  <_ 
k }  =  {
z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
87adantl 453 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  T  =/=  (/) )  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  =  {
z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
9 id 20 . . . . . . 7  |-  ( T  =/=  (/)  ->  T  =/=  (/) )
10 ubthlem.7 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  T  C_  ( U  BLnOp  W ) )
1110sselda 3340 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  ( U  BLnOp  W ) )
12 ubthlem.3 . . . . . . . . . . . . . . . . . . . 20  |-  D  =  ( IndMet `  U )
13 eqid 2435 . . . . . . . . . . . . . . . . . . . 20  |-  ( IndMet `  W )  =  (
IndMet `  W )
14 ubthlem.4 . . . . . . . . . . . . . . . . . . . 20  |-  J  =  ( MetOpen `  D )
15 eqid 2435 . . . . . . . . . . . . . . . . . . . 20  |-  ( MetOpen `  ( IndMet `  W )
)  =  ( MetOpen `  ( IndMet `  W )
)
16 eqid 2435 . . . . . . . . . . . . . . . . . . . 20  |-  ( U 
BLnOp  W )  =  ( U  BLnOp  W )
17 ubthlem.5 . . . . . . . . . . . . . . . . . . . . 21  |-  U  e. 
CBan
18 bnnv 22360 . . . . . . . . . . . . . . . . . . . . 21  |-  ( U  e.  CBan  ->  U  e.  NrmCVec )
1917, 18ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  U  e.  NrmCVec
20 ubthlem.6 . . . . . . . . . . . . . . . . . . . 20  |-  W  e.  NrmCVec
2112, 13, 14, 15, 16, 19, 20blocn2 22301 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  ( U  BLnOp  W )  ->  t  e.  ( J  Cn  ( MetOpen
`  ( IndMet `  W
) ) ) )
22 ubth.1 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  X  =  ( BaseSet `  U )
2322, 12cbncms 22359 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( U  e.  CBan  ->  D  e.  ( CMet `  X
) )
2417, 23ax-mp 8 . . . . . . . . . . . . . . . . . . . . . 22  |-  D  e.  ( CMet `  X
)
25 cmetmet 19231 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
26 metxmet 18356 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
2724, 25, 26mp2b 10 . . . . . . . . . . . . . . . . . . . . 21  |-  D  e.  ( * Met `  X
)
2814mopntopon 18461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
2927, 28ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  J  e.  (TopOn `  X )
30 eqid 2435 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
3130, 13imsxmet 22176 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( W  e.  NrmCVec  ->  ( IndMet `  W
)  e.  ( * Met `  ( BaseSet `  W ) ) )
3220, 31ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  ( IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )
3315mopntopon 18461 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )  ->  ( MetOpen `  ( IndMet `
 W ) )  e.  (TopOn `  ( BaseSet
`  W ) ) )
3432, 33ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  ( MetOpen `  ( IndMet `  W )
)  e.  (TopOn `  ( BaseSet `  W )
)
35 iscncl 17325 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  (TopOn `  X )  /\  ( MetOpen
`  ( IndMet `  W
) )  e.  (TopOn `  ( BaseSet `  W )
) )  ->  (
t  e.  ( J  Cn  ( MetOpen `  ( IndMet `
 W ) ) )  <->  ( t : X --> ( BaseSet `  W
)  /\  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) ) ) )
3629, 34, 35mp2an 654 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  ( J  Cn  ( MetOpen `  ( IndMet `  W ) ) )  <-> 
( t : X --> ( BaseSet `  W )  /\  A. x  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) ( `' t
" x )  e.  ( Clsd `  J
) ) )
3721, 36sylib 189 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ( U  BLnOp  W )  ->  ( t : X --> ( BaseSet `  W
)  /\  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) ) )
3811, 37syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  t  e.  T )  ->  (
t : X --> ( BaseSet `  W )  /\  A. x  e.  ( Clsd `  ( MetOpen `  ( IndMet `  W ) ) ) ( `' t "
x )  e.  (
Clsd `  J )
) )
3938simpld 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  T )  ->  t : X --> ( BaseSet `  W
) )
4039adantlr 696 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  t : X --> ( BaseSet `  W
) )
4140ffvelrnda 5862 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T
)  /\  x  e.  X )  ->  (
t `  x )  e.  ( BaseSet `  W )
)
4241biantrurd 495 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T
)  /\  x  e.  X )  ->  (
( N `  (
t `  x )
)  <_  k  <->  ( (
t `  x )  e.  ( BaseSet `  W )  /\  ( N `  (
t `  x )
)  <_  k )
) )
43 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( y  =  ( t `  x )  ->  ( N `  y )  =  ( N `  ( t `  x
) ) )
4443breq1d 4214 . . . . . . . . . . . . . 14  |-  ( y  =  ( t `  x )  ->  (
( N `  y
)  <_  k  <->  ( N `  ( t `  x
) )  <_  k
) )
4544elrab 3084 . . . . . . . . . . . . 13  |-  ( ( t `  x )  e.  { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } 
<->  ( ( t `  x )  e.  (
BaseSet `  W )  /\  ( N `  ( t `
 x ) )  <_  k ) )
4642, 45syl6bbr 255 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T
)  /\  x  e.  X )  ->  (
( N `  (
t `  x )
)  <_  k  <->  ( t `  x )  e.  {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } ) )
4746pm5.32da 623 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
( x  e.  X  /\  ( N `  (
t `  x )
)  <_  k )  <->  ( x  e.  X  /\  ( t `  x
)  e.  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k } ) ) )
48 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
t `  z )  =  ( t `  x ) )
4948fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( N `  ( t `  z ) )  =  ( N `  (
t `  x )
) )
5049breq1d 4214 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( N `  (
t `  z )
)  <_  k  <->  ( N `  ( t `  x
) )  <_  k
) )
5150elrab 3084 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  X  |  ( N `
 ( t `  z ) )  <_ 
k }  <->  ( x  e.  X  /\  ( N `  ( t `  x ) )  <_ 
k ) )
5251a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
x  e.  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  <->  ( x  e.  X  /\  ( N `  ( t `  x ) )  <_ 
k ) ) )
53 ffn 5583 . . . . . . . . . . . 12  |-  ( t : X --> ( BaseSet `  W )  ->  t  Fn  X )
54 elpreima 5842 . . . . . . . . . . . 12  |-  ( t  Fn  X  ->  (
x  e.  ( `' t " { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k } )  <->  ( x  e.  X  /\  (
t `  x )  e.  { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
) ) )
5540, 53, 543syl 19 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
x  e.  ( `' t " { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k } )  <->  ( x  e.  X  /\  (
t `  x )  e.  { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
) ) )
5647, 52, 553bitr4d 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
x  e.  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  <->  x  e.  ( `' t " {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } ) ) )
5756eqrdv 2433 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  =  ( `' t " {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } ) )
58 nnre 9999 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR )
5958ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  k  e.  RR )
6059rexrd 9126 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  k  e.  RR* )
61 eqid 2435 . . . . . . . . . . . . . 14  |-  ( 0vec `  W )  =  (
0vec `  W )
6230, 61nvzcl 22107 . . . . . . . . . . . . 13  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  ( BaseSet `  W ) )
6320, 62ax-mp 8 . . . . . . . . . . . 12  |-  ( 0vec `  W )  e.  (
BaseSet `  W )
64 ubth.2 . . . . . . . . . . . . . . . . . 18  |-  N  =  ( normCV `  W )
6530, 61, 64, 13nvnd 22172 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  NrmCVec  /\  y  e.  ( BaseSet `  W )
)  ->  ( N `  y )  =  ( y ( IndMet `  W
) ( 0vec `  W
) ) )
6620, 65mpan 652 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( BaseSet `  W
)  ->  ( N `  y )  =  ( y ( IndMet `  W
) ( 0vec `  W
) ) )
67 xmetsym 18369 . . . . . . . . . . . . . . . . 17  |-  ( ( ( IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )  /\  ( 0vec `  W
)  e.  ( BaseSet `  W )  /\  y  e.  ( BaseSet `  W )
)  ->  ( ( 0vec `  W ) (
IndMet `  W ) y )  =  ( y ( IndMet `  W )
( 0vec `  W )
) )
6832, 63, 67mp3an12 1269 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( BaseSet `  W
)  ->  ( ( 0vec `  W ) (
IndMet `  W ) y )  =  ( y ( IndMet `  W )
( 0vec `  W )
) )
6966, 68eqtr4d 2470 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( BaseSet `  W
)  ->  ( N `  y )  =  ( ( 0vec `  W
) ( IndMet `  W
) y ) )
7069breq1d 4214 . . . . . . . . . . . . . 14  |-  ( y  e.  ( BaseSet `  W
)  ->  ( ( N `  y )  <_  k  <->  ( ( 0vec `  W ) ( IndMet `  W ) y )  <_  k ) )
7170rabbiia 2938 . . . . . . . . . . . . 13  |-  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  =  {
y  e.  ( BaseSet `  W )  |  ( ( 0vec `  W
) ( IndMet `  W
) y )  <_ 
k }
7215, 71blcld 18527 . . . . . . . . . . . 12  |-  ( ( ( IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )  /\  ( 0vec `  W
)  e.  ( BaseSet `  W )  /\  k  e.  RR* )  ->  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) )
7332, 63, 72mp3an12 1269 . . . . . . . . . . 11  |-  ( k  e.  RR*  ->  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) )
7460, 73syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) )
7538simprd 450 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  T )  ->  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) )
7675adantlr 696 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) )
77 imaeq2 5191 . . . . . . . . . . . 12  |-  ( x  =  { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k }  ->  ( `' t
" x )  =  ( `' t " { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
) )
7877eleq1d 2501 . . . . . . . . . . 11  |-  ( x  =  { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k }  ->  ( ( `' t " x )  e.  ( Clsd `  J
)  <->  ( `' t
" { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } )  e.  (
Clsd `  J )
) )
7978rspcv 3040 . . . . . . . . . 10  |-  ( { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k }  e.  ( Clsd `  ( MetOpen `  ( IndMet `
 W ) ) )  ->  ( A. x  e.  ( Clsd `  ( MetOpen `  ( IndMet `  W ) ) ) ( `' t "
x )  e.  (
Clsd `  J )  ->  ( `' t " { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
)  e.  ( Clsd `  J ) ) )
8074, 76, 79sylc 58 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  ( `' t " {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } )  e.  ( Clsd `  J
) )
8157, 80eqeltrd 2509 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  e.  ( Clsd `  J )
)
8281ralrimiva 2781 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  A. t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
83 iincld 17095 . . . . . . 7  |-  ( ( T  =/=  (/)  /\  A. t  e.  T  {
z  e.  X  | 
( N `  (
t `  z )
)  <_  k }  e.  ( Clsd `  J
) )  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
849, 82, 83syl2anr 465 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  T  =/=  (/) )  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
858, 84eqeltrrd 2510 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  T  =/=  (/) )  ->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
8614mopntop 18462 . . . . . . . 8  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
8727, 86ax-mp 8 . . . . . . 7  |-  J  e. 
Top
8829toponunii 16989 . . . . . . . 8  |-  X  = 
U. J
8988topcld 17091 . . . . . . 7  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
9087, 89ax-mp 8 . . . . . 6  |-  X  e.  ( Clsd `  J
)
9190a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  X  e.  ( Clsd `  J
) )
926, 85, 91pm2.61ne 2673 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
93 ubthlem.9 . . . 4  |-  A  =  ( k  e.  NN  |->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
9492, 93fmptd 5885 . . 3  |-  ( ph  ->  A : NN --> ( Clsd `  J ) )
95 frn 5589 . . . . . . 7  |-  ( A : NN --> ( Clsd `  J )  ->  ran  A 
C_  ( Clsd `  J
) )
9694, 95syl 16 . . . . . 6  |-  ( ph  ->  ran  A  C_  ( Clsd `  J ) )
9788cldss2 17086 . . . . . 6  |-  ( Clsd `  J )  C_  ~P X
9896, 97syl6ss 3352 . . . . 5  |-  ( ph  ->  ran  A  C_  ~P X )
99 sspwuni 4168 . . . . 5  |-  ( ran 
A  C_  ~P X  <->  U.
ran  A  C_  X )
10098, 99sylib 189 . . . 4  |-  ( ph  ->  U. ran  A  C_  X )
101 ubthlem.8 . . . . . 6  |-  ( ph  ->  A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `
 x ) )  <_  c )
102 arch 10210 . . . . . . . . . 10  |-  ( c  e.  RR  ->  E. k  e.  NN  c  <  k
)
103102adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  E. k  e.  NN  c  <  k
)
104 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  c  e.  RR )
105 ltle 9155 . . . . . . . . . . . . . . . . 17  |-  ( ( c  e.  RR  /\  k  e.  RR )  ->  ( c  <  k  ->  c  <_  k )
)
106104, 58, 105syl2an 464 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( c  < 
k  ->  c  <_  k ) )
107106impr 603 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  -> 
c  <_  k )
108107adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  c  <_  k )
10939ffvelrnda 5862 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  t  e.  T )  /\  x  e.  X )  ->  (
t `  x )  e.  ( BaseSet `  W )
)
110109an32s 780 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  t  e.  T )  ->  (
t `  x )  e.  ( BaseSet `  W )
)
11130, 64nvcl 22140 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  NrmCVec  /\  (
t `  x )  e.  ( BaseSet `  W )
)  ->  ( N `  ( t `  x
) )  e.  RR )
11220, 110, 111sylancr 645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  t  e.  T )  ->  ( N `  ( t `  x ) )  e.  RR )
113112adantlr 696 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  t  e.  T
)  ->  ( N `  ( t `  x
) )  e.  RR )
114113adantlr 696 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  ( N `  (
t `  x )
)  e.  RR )
115 simpllr 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  c  e.  RR )
116 simplrl 737 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  k  e.  NN )
117116, 58syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  k  e.  RR )
118 letr 9159 . . . . . . . . . . . . . . 15  |-  ( ( ( N `  (
t `  x )
)  e.  RR  /\  c  e.  RR  /\  k  e.  RR )  ->  (
( ( N `  ( t `  x
) )  <_  c  /\  c  <_  k )  ->  ( N `  ( t `  x
) )  <_  k
) )
119114, 115, 117, 118syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  ( ( ( N `
 ( t `  x ) )  <_ 
c  /\  c  <_  k )  ->  ( N `  ( t `  x
) )  <_  k
) )
120108, 119mpan2d 656 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  ( ( N `  ( t `  x
) )  <_  c  ->  ( N `  (
t `  x )
)  <_  k )
)
121120ralimdva 2776 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  -> 
( A. t  e.  T  ( N `  ( t `  x
) )  <_  c  ->  A. t  e.  T  ( N `  ( t `
 x ) )  <_  k ) )
122121expr 599 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( c  < 
k  ->  ( A. t  e.  T  ( N `  ( t `  x ) )  <_ 
c  ->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) ) )
123 fvex 5734 . . . . . . . . . . . . . . . . . . 19  |-  ( BaseSet `  U )  e.  _V
12422, 123eqeltri 2505 . . . . . . . . . . . . . . . . . 18  |-  X  e. 
_V
125124rabex 4346 . . . . . . . . . . . . . . . . 17  |-  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  e.  _V
12693fvmpt2 5804 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN  /\  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k }  e.  _V )  ->  ( A `
 k )  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
127125, 126mpan2 653 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  ( A `  k )  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
128127eleq2d 2502 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
x  e.  ( A `
 k )  <->  x  e.  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } ) )
12950ralbidv 2717 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  ( A. t  e.  T  ( N `  ( t `
 z ) )  <_  k  <->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) )
130129elrab 3084 . . . . . . . . . . . . . . 15  |-  ( x  e.  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z
) )  <_  k } 
<->  ( x  e.  X  /\  A. t  e.  T  ( N `  ( t `
 x ) )  <_  k ) )
131128, 130syl6bb 253 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
x  e.  ( A `
 k )  <->  ( x  e.  X  /\  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) ) )
132 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
133132biantrurd 495 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  k  <->  ( x  e.  X  /\  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) ) )
134133bicomd 193 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  /\  A. t  e.  T  ( N `  ( t `
 x ) )  <_  k )  <->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) )
135131, 134sylan9bbr 682 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  NN )  ->  (
x  e.  ( A `
 k )  <->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) )
136 ffn 5583 . . . . . . . . . . . . . . . 16  |-  ( A : NN --> ( Clsd `  J )  ->  A  Fn  NN )
13794, 136syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  Fn  NN )
138137adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  A  Fn  NN )
139 fnfvelrn 5859 . . . . . . . . . . . . . . . 16  |-  ( ( A  Fn  NN  /\  k  e.  NN )  ->  ( A `  k
)  e.  ran  A
)
140 elssuni 4035 . . . . . . . . . . . . . . . 16  |-  ( ( A `  k )  e.  ran  A  -> 
( A `  k
)  C_  U. ran  A
)
141139, 140syl 16 . . . . . . . . . . . . . . 15  |-  ( ( A  Fn  NN  /\  k  e.  NN )  ->  ( A `  k
)  C_  U. ran  A
)
142141sseld 3339 . . . . . . . . . . . . . 14  |-  ( ( A  Fn  NN  /\  k  e.  NN )  ->  ( x  e.  ( A `  k )  ->  x  e.  U. ran  A ) )
143138, 142sylan 458 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  NN )  ->  (
x  e.  ( A `
 k )  ->  x  e.  U. ran  A
) )
144135, 143sylbird 227 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  NN )  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  k  ->  x  e.  U. ran  A ) )
145144adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( A. t  e.  T  ( N `  ( t `  x
) )  <_  k  ->  x  e.  U. ran  A ) )
146122, 145syl6d 66 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( c  < 
k  ->  ( A. t  e.  T  ( N `  ( t `  x ) )  <_ 
c  ->  x  e.  U.
ran  A ) ) )
147146rexlimdva 2822 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  ( E. k  e.  NN  c  <  k  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  c  ->  x  e.  U. ran  A ) ) )
148103, 147mpd 15 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  c  ->  x  e.  U. ran  A ) )
149148rexlimdva 2822 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( E. c  e.  RR  A. t  e.  T  ( N `  ( t `
 x ) )  <_  c  ->  x  e.  U. ran  A ) )
150149ralimdva 2776 . . . . . 6  |-  ( ph  ->  ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  ->  A. x  e.  X  x  e.  U. ran  A
) )
151101, 150mpd 15 . . . . 5  |-  ( ph  ->  A. x  e.  X  x  e.  U. ran  A
)
152 dfss3 3330 . . . . 5  |-  ( X 
C_  U. ran  A  <->  A. x  e.  X  x  e.  U.
ran  A )
153151, 152sylibr 204 . . . 4  |-  ( ph  ->  X  C_  U. ran  A
)
154100, 153eqssd 3357 . . 3  |-  ( ph  ->  U. ran  A  =  X )
155 eqid 2435 . . . . . 6  |-  ( 0vec `  U )  =  (
0vec `  U )
15622, 155nvzcl 22107 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  X )
157 ne0i 3626 . . . . 5  |-  ( (
0vec `  U )  e.  X  ->  X  =/=  (/) )
15819, 156, 157mp2b 10 . . . 4  |-  X  =/=  (/)
15914bcth2 19275 . . . 4  |-  ( ( ( D  e.  (
CMet `  X )  /\  X  =/=  (/) )  /\  ( A : NN --> ( Clsd `  J )  /\  U. ran  A  =  X ) )  ->  E. n  e.  NN  ( ( int `  J ) `  ( A `  n )
)  =/=  (/) )
16024, 158, 159mpanl12 664 . . 3  |-  ( ( A : NN --> ( Clsd `  J )  /\  U. ran  A  =  X )  ->  E. n  e.  NN  ( ( int `  J
) `  ( A `  n ) )  =/=  (/) )
16194, 154, 160syl2anc 643 . 2  |-  ( ph  ->  E. n  e.  NN  ( ( int `  J
) `  ( A `  n ) )  =/=  (/) )
162 ffvelrn 5860 . . . . . . . . . . 11  |-  ( ( A : NN --> ( Clsd `  J )  /\  n  e.  NN )  ->  ( A `  n )  e.  ( Clsd `  J
) )
16397, 162sseldi 3338 . . . . . . . . . 10  |-  ( ( A : NN --> ( Clsd `  J )  /\  n  e.  NN )  ->  ( A `  n )  e.  ~P X )
164163elpwid 3800 . . . . . . . . 9  |-  ( ( A : NN --> ( Clsd `  J )  /\  n  e.  NN )  ->  ( A `  n )  C_  X )
16594, 164sylan 458 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A `
 n )  C_  X )
16688ntrss3 17116 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( A `  n ) 
C_  X )  -> 
( ( int `  J
) `  ( A `  n ) )  C_  X )
16787, 165, 166sylancr 645 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  C_  X )
168167sseld 3339 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( y  e.  ( ( int `  J ) `  ( A `  n )
)  ->  y  e.  X ) )
16988ntropn 17105 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( A `  n ) 
C_  X )  -> 
( ( int `  J
) `  ( A `  n ) )  e.  J )
17087, 165, 169sylancr 645 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  e.  J )
17114mopni2 18515 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( int `  J ) `  ( A `  n )
)  e.  J  /\  y  e.  ( ( int `  J ) `  ( A `  n ) ) )  ->  E. x  e.  RR+  ( y (
ball `  D )
x )  C_  (
( int `  J
) `  ( A `  n ) ) )
17227, 171mp3an1 1266 . . . . . . . . 9  |-  ( ( ( ( int `  J
) `  ( A `  n ) )  e.  J  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  E. x  e.  RR+  ( y ( ball `  D ) x ) 
C_  ( ( int `  J ) `  ( A `  n )
) )
173170, 172sylan 458 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  E. x  e.  RR+  ( y ( ball `  D ) x ) 
C_  ( ( int `  J ) `  ( A `  n )
) )
174 elssuni 4035 . . . . . . . . . . . 12  |-  ( ( ( int `  J
) `  ( A `  n ) )  e.  J  ->  ( ( int `  J ) `  ( A `  n ) )  C_  U. J )
175174, 88syl6sseqr 3387 . . . . . . . . . . 11  |-  ( ( ( int `  J
) `  ( A `  n ) )  e.  J  ->  ( ( int `  J ) `  ( A `  n ) )  C_  X )
176170, 175syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  C_  X )
177176sselda 3340 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  y  e.  X
)
17888ntrss2 17113 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( A `  n ) 
C_  X )  -> 
( ( int `  J
) `  ( A `  n ) )  C_  ( A `  n ) )
17987, 165, 178sylancr 645 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  C_  ( A `  n ) )
180 sstr2 3347 . . . . . . . . . . . . 13  |-  ( ( y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  -> 
( ( ( int `  J ) `  ( A `  n )
)  C_  ( A `  n )  ->  (
y ( ball `  D
) x )  C_  ( A `  n ) ) )
181179, 180syl5com 28 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  -> 
( y ( ball `  D ) x ) 
C_  ( A `  n ) ) )
182181ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( (
y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  -> 
( y ( ball `  D ) x ) 
C_  ( A `  n ) ) )
183 simpr 448 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X )  ->  y  e.  X )
184183, 27jctil 524 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X )  ->  ( D  e.  ( * Met `  X )  /\  y  e.  X )
)
185 rphalfcl 10628 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
186185rpxrd 10641 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( x  /  2 )  e. 
RR* )
187 rpxr 10611 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  x  e. 
RR* )
188 rphalflt 10630 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( x  /  2 )  < 
x )
189186, 187, 1883jca 1134 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( x  /  2 )  e.  RR*  /\  x  e.  RR*  /\  ( x  /  2 )  < 
x ) )
190 eqid 2435 . . . . . . . . . . . . . 14  |-  { z  e.  X  |  ( y D z )  <_  ( x  / 
2 ) }  =  { z  e.  X  |  ( y D z )  <_  (
x  /  2 ) }
19114, 190blsscls2 18526 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X )  /\  (
( x  /  2
)  e.  RR*  /\  x  e.  RR*  /\  ( x  /  2 )  < 
x ) )  ->  { z  e.  X  |  ( y D z )  <_  (
x  /  2 ) }  C_  ( y
( ball `  D )
x ) )
192184, 189, 191syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  { z  e.  X  |  (
y D z )  <_  ( x  / 
2 ) }  C_  ( y ( ball `  D ) x ) )
193 sstr2 3347 . . . . . . . . . . . 12  |-  ( { z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( y (
ball `  D )
x )  ->  (
( y ( ball `  D ) x ) 
C_  ( A `  n )  ->  { z  e.  X  |  ( y D z )  <_  ( x  / 
2 ) }  C_  ( A `  n ) ) )
194192, 193syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( (
y ( ball `  D
) x )  C_  ( A `  n )  ->  { z  e.  X  |  ( y D z )  <_ 
( x  /  2
) }  C_  ( A `  n )
) )
195185adantl 453 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
196 breq2 4208 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( x  / 
2 )  ->  (
( y D z )  <_  r  <->  ( y D z )  <_ 
( x  /  2
) ) )
197196rabbidv 2940 . . . . . . . . . . . . . . 15  |-  ( r  =  ( x  / 
2 )  ->  { z  e.  X  |  ( y D z )  <_  r }  =  { z  e.  X  |  ( y D z )  <_  (
x  /  2 ) } )
198197sseq1d 3367 . . . . . . . . . . . . . 14  |-  ( r  =  ( x  / 
2 )  ->  ( { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n )  <->  { z  e.  X  |  (
y D z )  <_  ( x  / 
2 ) }  C_  ( A `  n ) ) )
199198rspcev 3044 . . . . . . . . . . . . 13  |-  ( ( ( x  /  2
)  e.  RR+  /\  {
z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) )
200199ex 424 . . . . . . . . . . . 12  |-  ( ( x  /  2 )  e.  RR+  ->  ( { z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( A `  n )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
201195, 200syl 16 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( {
z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( A `  n )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
202182, 194, 2013syld 53 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( (
y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
203202rexlimdva 2822 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X )  ->  ( E. x  e.  RR+  (
y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
204177, 203syldan 457 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  ( E. x  e.  RR+  ( y (
ball `  D )
x )  C_  (
( int `  J
) `  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
205173, 204mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  E. r  e.  RR+  { z  e.  X  | 
( y D z )  <_  r }  C_  ( A `  n
) )
206205ex 424 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( y  e.  ( ( int `  J ) `  ( A `  n )
)  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
207168, 206jcad 520 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( y  e.  ( ( int `  J ) `  ( A `  n )
)  ->  ( y  e.  X  /\  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) ) )
208207eximdv 1632 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. y  y  e.  ( ( int `  J
) `  ( A `  n ) )  ->  E. y ( y  e.  X  /\  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) ) )
209 n0 3629 . . . 4  |-  ( ( ( int `  J
) `  ( A `  n ) )  =/=  (/) 
<->  E. y  y  e.  ( ( int `  J
) `  ( A `  n ) ) )
210 df-rex 2703 . . . 4  |-  ( E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n )  <->  E. y ( y  e.  X  /\  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
211208, 209, 2103imtr4g 262 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( int `  J
) `  ( A `  n ) )  =/=  (/)  ->  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
212211reximdva 2810 . 2  |-  ( ph  ->  ( E. n  e.  NN  ( ( int `  J ) `  ( A `  n )
)  =/=  (/)  ->  E. n  e.  NN  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
213161, 212mpd 15 1  |-  ( ph  ->  E. n  e.  NN  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948    C_ wss 3312   (/)c0 3620   ~Pcpw 3791   U.cuni 4007   |^|_ciin 4086   class class class wbr 4204    e. cmpt 4258   `'ccnv 4869   ran crn 4871   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   RRcr 8981   RR*cxr 9111    < clt 9112    <_ cle 9113    / cdiv 9669   NNcn 9992   2c2 10041   RR+crp 10604   * Metcxmt 16678   Metcme 16679   ballcbl 16680   MetOpencmopn 16683   Topctop 16950  TopOnctopon 16951   Clsdccld 17072   intcnt 17073    Cn ccn 17280   CMetcms 19199   NrmCVeccnv 22055   BaseSetcba 22057   0veccn0v 22059   normCVcnmcv 22061   IndMetcims 22062    BLnOp cblo 22235   CBanccbn 22356
This theorem is referenced by:  ubthlem3  22366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-dc 8318  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ico 10914  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-rest 13642  df-topgen 13659  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-top 16955  df-bases 16957  df-topon 16958  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-cn 17283  df-cnp 17284  df-lm 17285  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-cfil 19200  df-cau 19201  df-cmet 19202  df-grpo 21771  df-gid 21772  df-ginv 21773  df-gdiv 21774  df-ablo 21862  df-vc 22017  df-nv 22063  df-va 22066  df-ba 22067  df-sm 22068  df-0v 22069  df-vs 22070  df-nmcv 22071  df-ims 22072  df-lno 22237  df-nmoo 22238  df-blo 22239  df-0o 22240  df-cbn 22357
  Copyright terms: Public domain W3C validator