MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ucnima Structured version   Unicode version

Theorem ucnima 18303
Description: An equivalent statement of the definition of uniformly continuous function. (Contributed by Thierry Arnoux, 19-Nov-2017.)
Hypotheses
Ref Expression
ucnprima.1  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
ucnprima.2  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
ucnprima.3  |-  ( ph  ->  F  e.  ( U Cnu V ) )
ucnprima.4  |-  ( ph  ->  W  e.  V )
ucnprima.5  |-  G  =  ( x  e.  X ,  y  e.  X  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)
Assertion
Ref Expression
ucnima  |-  ( ph  ->  E. r  e.  U  ( G " r ) 
C_  W )
Distinct variable groups:    x, y, F    x, X, y, r    F, r    x, G, y    U, r, x, y    V, r, x    W, r, x, y    X, r    Y, r, x    ph, r, x, y
Allowed substitution hints:    G( r)    V( y)    Y( y)

Proof of Theorem ucnima
Dummy variables  p  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ucnprima.4 . . . . 5  |-  ( ph  ->  W  e.  V )
2 ucnprima.3 . . . . . . 7  |-  ( ph  ->  F  e.  ( U Cnu V ) )
3 ucnprima.1 . . . . . . . 8  |-  ( ph  ->  U  e.  (UnifOn `  X ) )
4 ucnprima.2 . . . . . . . 8  |-  ( ph  ->  V  e.  (UnifOn `  Y ) )
5 isucn 18300 . . . . . . . 8  |-  ( ( U  e.  (UnifOn `  X )  /\  V  e.  (UnifOn `  Y )
)  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) w ( F `
 y ) ) ) ) )
63, 4, 5syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( F  e.  ( U Cnu V )  <->  ( F : X --> Y  /\  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) w ( F `
 y ) ) ) ) )
72, 6mpbid 202 . . . . . 6  |-  ( ph  ->  ( F : X --> Y  /\  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) ) ) )
87simprd 450 . . . . 5  |-  ( ph  ->  A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) ) )
9 breq 4206 . . . . . . . . 9  |-  ( w  =  W  ->  (
( F `  x
) w ( F `
 y )  <->  ( F `  x ) W ( F `  y ) ) )
109imbi2d 308 . . . . . . . 8  |-  ( w  =  W  ->  (
( x r y  ->  ( F `  x ) w ( F `  y ) )  <->  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
1110ralbidv 2717 . . . . . . 7  |-  ( w  =  W  ->  ( A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) )  <->  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
1211rexralbidv 2741 . . . . . 6  |-  ( w  =  W  ->  ( E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) )  <->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
1312rspcv 3040 . . . . 5  |-  ( W  e.  V  ->  ( A. w  e.  V  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) w ( F `  y ) )  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x ) W ( F `  y ) ) ) )
141, 8, 13sylc 58 . . . 4  |-  ( ph  ->  E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )
15 simplll 735 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  ph )
16 simplr 732 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x ) W ( F `  y ) ) )
1715, 16jca 519 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  ( ph  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
18 ustssxp 18226 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  r  e.  U )  ->  r  C_  ( X  X.  X
) )
193, 18sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  r  e.  U )  ->  r  C_  ( X  X.  X
) )
2019sselda 3340 . . . . . . . . 9  |-  ( ( ( ph  /\  r  e.  U )  /\  p  e.  r )  ->  p  e.  ( X  X.  X
) )
2120adantlr 696 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  p  e.  ( X  X.  X
) )
22 simpr 448 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  p  e.  r )
23 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  A. x  e.  X  A. y  e.  X  ( x
r y  ->  ( F `  x ) W ( F `  y ) ) )
24 simpr 448 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  p  e.  ( X  X.  X
) )
25 elxp2 4888 . . . . . . . . . . . . . 14  |-  ( p  e.  ( X  X.  X )  <->  E. x  e.  X  E. y  e.  X  p  =  <. x ,  y >.
)
2624, 25sylib 189 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  p  =  <. x ,  y >.
)
27 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  p  =  <. x ,  y >.
)  ->  p  =  <. x ,  y >.
)
2827eleq1d 2501 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  p  =  <. x ,  y >.
)  ->  ( p  e.  r  <->  <. x ,  y
>.  e.  r ) )
2928adantlr 696 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( p  e.  r  <->  <. x ,  y >.  e.  r
) )
30 df-br 4205 . . . . . . . . . . . . . . . . . 18  |-  ( x r y  <->  <. x ,  y >.  e.  r
)
3129, 30syl6bbr 255 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( p  e.  r  <->  x r
y ) )
32 simplr 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  p  e.  ( X  X.  X
) )
33 opex 4419 . . . . . . . . . . . . . . . . . . . . 21  |-  <. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) )
>.  e.  _V
34 ucnprima.5 . . . . . . . . . . . . . . . . . . . . . . 23  |-  G  =  ( x  e.  X ,  y  e.  X  |-> 
<. ( F `  x
) ,  ( F `
 y ) >.
)
353, 4, 2, 1, 34ucnimalem 18302 . . . . . . . . . . . . . . . . . . . . . 22  |-  G  =  ( p  e.  ( X  X.  X ) 
|->  <. ( F `  ( 1st `  p ) ) ,  ( F `
 ( 2nd `  p
) ) >. )
3635fvmpt2 5804 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e.  ( X  X.  X )  /\  <.
( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) ) >.  e.  _V )  ->  ( G `  p )  =  <. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) )
>. )
3732, 33, 36sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( G `
 p )  = 
<. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) ) >. )
38 simpr 448 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  p  = 
<. x ,  y >.
)
39 1st2nd2 6378 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( p  e.  ( X  X.  X )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
4032, 39syl 16 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  p  = 
<. ( 1st `  p
) ,  ( 2nd `  p ) >. )
4138, 40eqtr3d 2469 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  <. x ,  y >.  =  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
42 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  x  e. 
_V
43 vex 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  y  e. 
_V
4442, 43opth 4427 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( <.
x ,  y >.  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >.  <->  ( x  =  ( 1st `  p
)  /\  y  =  ( 2nd `  p ) ) )
4541, 44sylib 189 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( x  =  ( 1st `  p
)  /\  y  =  ( 2nd `  p ) ) )
4645simpld 446 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  x  =  ( 1st `  p
) )
4746fveq2d 5724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( F `
 x )  =  ( F `  ( 1st `  p ) ) )
4845simprd 450 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  y  =  ( 2nd `  p
) )
4948fveq2d 5724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( F `
 y )  =  ( F `  ( 2nd `  p ) ) )
5047, 49opeq12d 3984 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  <. ( F `  x ) ,  ( F `  y ) >.  =  <. ( F `  ( 1st `  p ) ) ,  ( F `  ( 2nd `  p ) )
>. )
5137, 50eqtr4d 2470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( G `
 p )  = 
<. ( F `  x
) ,  ( F `
 y ) >.
)
5251eleq1d 2501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( ( G `  p )  e.  W  <->  <. ( F `
 x ) ,  ( F `  y
) >.  e.  W ) )
53 df-br 4205 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  x ) W ( F `  y )  <->  <. ( F `
 x ) ,  ( F `  y
) >.  e.  W )
5452, 53syl6bbr 255 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( ( G `  p )  e.  W  <->  ( F `  x ) W ( F `  y ) ) )
5531, 54imbi12d 312 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  p  e.  ( X  X.  X
) )  /\  p  =  <. x ,  y
>. )  ->  ( ( p  e.  r  -> 
( G `  p
)  e.  W )  <-> 
( x r y  ->  ( F `  x ) W ( F `  y ) ) ) )
5655exbiri 606 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  (
p  =  <. x ,  y >.  ->  (
( x r y  ->  ( F `  x ) W ( F `  y ) )  ->  ( p  e.  r  ->  ( G `
 p )  e.  W ) ) ) )
5756reximdv 2809 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  ( E. y  e.  X  p  =  <. x ,  y >.  ->  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) ) )
5857reximdv 2809 . . . . . . . . . . . . 13  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  ( E. x  e.  X  E. y  e.  X  p  =  <. x ,  y >.  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) ) )
5926, 58mpd 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )
6059adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )
6123, 60r19.29d2r 2843 . . . . . . . . . 10  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  E. x  e.  X  E. y  e.  X  ( (
x r y  -> 
( F `  x
) W ( F `
 y ) )  /\  ( ( x r y  ->  ( F `  x ) W ( F `  y ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) ) ) )
62 pm3.35 571 . . . . . . . . . . . 12  |-  ( ( ( x r y  ->  ( F `  x ) W ( F `  y ) )  /\  ( ( x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) )
6362rexlimivw 2818 . . . . . . . . . . 11  |-  ( E. y  e.  X  ( ( x r y  ->  ( F `  x ) W ( F `  y ) )  /\  ( ( x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) )
6463rexlimivw 2818 . . . . . . . . . 10  |-  ( E. x  e.  X  E. y  e.  X  (
( x r y  ->  ( F `  x ) W ( F `  y ) )  /\  ( ( x r y  -> 
( F `  x
) W ( F `
 y ) )  ->  ( p  e.  r  ->  ( G `  p )  e.  W
) ) )  -> 
( p  e.  r  ->  ( G `  p )  e.  W
) )
6561, 64syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  ->  (
p  e.  r  -> 
( G `  p
)  e.  W ) )
6665imp 419 . . . . . . . 8  |-  ( ( ( ( ph  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  /\  p  e.  ( X  X.  X
) )  /\  p  e.  r )  ->  ( G `  p )  e.  W )
6717, 21, 22, 66syl21anc 1183 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) ) )  /\  p  e.  r )  ->  ( G `  p )  e.  W )
6867ralrimiva 2781 . . . . . 6  |-  ( ( ( ph  /\  r  e.  U )  /\  A. x  e.  X  A. y  e.  X  (
x r y  -> 
( F `  x
) W ( F `
 y ) ) )  ->  A. p  e.  r  ( G `  p )  e.  W
)
6968ex 424 . . . . 5  |-  ( (
ph  /\  r  e.  U )  ->  ( A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) )  ->  A. p  e.  r  ( G `  p )  e.  W
) )
7069reximdva 2810 . . . 4  |-  ( ph  ->  ( E. r  e.  U  A. x  e.  X  A. y  e.  X  ( x r y  ->  ( F `  x ) W ( F `  y ) )  ->  E. r  e.  U  A. p  e.  r  ( G `  p )  e.  W
) )
7114, 70mpd 15 . . 3  |-  ( ph  ->  E. r  e.  U  A. p  e.  r 
( G `  p
)  e.  W )
7234mpt2fun 6164 . . . . . 6  |-  Fun  G
73 opex 4419 . . . . . . . 8  |-  <. ( F `  x ) ,  ( F `  y ) >.  e.  _V
7434, 73dmmpt2 6413 . . . . . . 7  |-  dom  G  =  ( X  X.  X )
7519, 74syl6sseqr 3387 . . . . . 6  |-  ( (
ph  /\  r  e.  U )  ->  r  C_ 
dom  G )
76 funimass4 5769 . . . . . 6  |-  ( ( Fun  G  /\  r  C_ 
dom  G )  -> 
( ( G "
r )  C_  W  <->  A. p  e.  r  ( G `  p )  e.  W ) )
7772, 75, 76sylancr 645 . . . . 5  |-  ( (
ph  /\  r  e.  U )  ->  (
( G " r
)  C_  W  <->  A. p  e.  r  ( G `  p )  e.  W
) )
7877biimprd 215 . . . 4  |-  ( (
ph  /\  r  e.  U )  ->  ( A. p  e.  r 
( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)
7978ralrimiva 2781 . . 3  |-  ( ph  ->  A. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)
80 r19.29r 2839 . . 3  |-  ( ( E. r  e.  U  A. p  e.  r 
( G `  p
)  e.  W  /\  A. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)  ->  E. r  e.  U  ( A. p  e.  r  ( G `  p )  e.  W  /\  ( A. p  e.  r 
( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
) )
8171, 79, 80syl2anc 643 . 2  |-  ( ph  ->  E. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  /\  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
) )
82 pm3.35 571 . . 3  |-  ( ( A. p  e.  r  ( G `  p
)  e.  W  /\  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)  ->  ( G " r )  C_  W
)
8382reximi 2805 . 2  |-  ( E. r  e.  U  ( A. p  e.  r  ( G `  p
)  e.  W  /\  ( A. p  e.  r  ( G `  p
)  e.  W  -> 
( G " r
)  C_  W )
)  ->  E. r  e.  U  ( G " r )  C_  W
)
8481, 83syl 16 1  |-  ( ph  ->  E. r  e.  U  ( G " r ) 
C_  W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   <.cop 3809   class class class wbr 4204    X. cxp 4868   dom cdm 4870   "cima 4873   Fun wfun 5440   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1stc1st 6339   2ndc2nd 6340  UnifOncust 18221   Cnucucn 18297
This theorem is referenced by:  ucnprima  18304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-map 7012  df-ust 18222  df-ucn 18298
  Copyright terms: Public domain W3C validator