MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffix2 Structured version   Unicode version

Theorem uffix2 17961
Description: A classification of fixed ultrafilters. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffix2  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =/=  (/)  <->  E. x  e.  X  F  =  { y  e.  ~P X  |  x  e.  y } ) )
Distinct variable groups:    x, y, F    x, X, y

Proof of Theorem uffix2
StepHypRef Expression
1 ufilfil 17941 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
2 filn0 17899 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
3 intssuni 4074 . . . . . . . 8  |-  ( F  =/=  (/)  ->  |^| F  C_  U. F )
41, 2, 33syl 19 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  U. F )
5 filunibas 17918 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
61, 5syl 16 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  U. F  =  X )
74, 6sseqtrd 3386 . . . . . 6  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  X )
87sseld 3349 . . . . 5  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  |^| F  ->  x  e.  X ) )
98pm4.71rd 618 . . . 4  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  |^| F  <->  ( x  e.  X  /\  x  e.  |^| F ) ) )
10 uffixfr 17960 . . . . 5  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  |^| F  <->  F  =  { y  e.  ~P X  |  x  e.  y } ) )
1110anbi2d 686 . . . 4  |-  ( F  e.  ( UFil `  X
)  ->  ( (
x  e.  X  /\  x  e.  |^| F )  <-> 
( x  e.  X  /\  F  =  {
y  e.  ~P X  |  x  e.  y } ) ) )
129, 11bitrd 246 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  |^| F  <->  ( x  e.  X  /\  F  =  { y  e.  ~P X  |  x  e.  y } ) ) )
1312exbidv 1637 . 2  |-  ( F  e.  ( UFil `  X
)  ->  ( E. x  x  e.  |^| F  <->  E. x ( x  e.  X  /\  F  =  { y  e.  ~P X  |  x  e.  y } ) ) )
14 n0 3639 . 2  |-  ( |^| F  =/=  (/)  <->  E. x  x  e. 
|^| F )
15 df-rex 2713 . 2  |-  ( E. x  e.  X  F  =  { y  e.  ~P X  |  x  e.  y }  <->  E. x ( x  e.  X  /\  F  =  { y  e.  ~P X  |  x  e.  y } ) )
1613, 14, 153bitr4g 281 1  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =/=  (/)  <->  E. x  e.  X  F  =  { y  e.  ~P X  |  x  e.  y } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   {crab 2711    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   U.cuni 4017   |^|cint 4052   ` cfv 5457   Filcfil 17882   UFilcufil 17936
This theorem is referenced by:  uffinfix  17964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-fbas 16704  df-fg 16705  df-fil 17883  df-ufil 17938
  Copyright terms: Public domain W3C validator