MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixfr Unicode version

Theorem uffixfr 17618
Description: An ultrafilter is either fixed or free. A fixed ultrafilter is called principal (generated by a single element  A), and a free ultrafilter is called nonprincipal (having empty intersection). Note that examples of free ultrafilters cannot be defined in ZFC without some form of global choice. (Contributed by Jeff Hankins, 4-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixfr  |-  ( F  e.  ( UFil `  X
)  ->  ( A  e.  |^| F  <->  F  =  { x  e.  ~P X  |  A  e.  x } ) )
Distinct variable groups:    x, A    x, F    x, X

Proof of Theorem uffixfr
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  e.  ( UFil `  X ) )
2 ufilfil 17599 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
3 filtop 17550 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
42, 3syl 15 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  X  e.  F )
54adantr 451 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  X  e.  F )
6 filn0 17557 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
7 intssuni 3884 . . . . . . . . 9  |-  ( F  =/=  (/)  ->  |^| F  C_  U. F )
82, 6, 73syl 18 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  U. F )
9 filunibas 17576 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
102, 9syl 15 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  U. F  =  X )
118, 10sseqtrd 3214 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  X )
1211sselda 3180 . . . . . 6  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  X )
13 uffix 17616 . . . . . 6  |-  ( ( X  e.  F  /\  A  e.  X )  ->  ( { { A } }  e.  ( fBas `  X )  /\  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) ) )
145, 12, 13syl2anc 642 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  -> 
( { { A } }  e.  ( fBas `  X )  /\  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) ) )
1514simprd 449 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { x  e.  ~P X  |  A  e.  x }  =  ( X filGen { { A } } ) )
1614simpld 445 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { { A } }  e.  ( fBas `  X
) )
17 fgcl 17573 . . . . 5  |-  ( { { A } }  e.  ( fBas `  X
)  ->  ( X filGen { { A } } )  e.  ( Fil `  X ) )
1816, 17syl 15 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  -> 
( X filGen { { A } } )  e.  ( Fil `  X
) )
1915, 18eqeltrd 2357 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X ) )
202adantr 451 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  e.  ( Fil `  X ) )
21 filsspw 17546 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
2220, 21syl 15 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  C_  ~P X )
23 elintg 3870 . . . . . 6  |-  ( A  e.  |^| F  ->  ( A  e.  |^| F  <->  A. x  e.  F  A  e.  x ) )
2423ibi 232 . . . . 5  |-  ( A  e.  |^| F  ->  A. x  e.  F  A  e.  x )
2524adantl 452 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A. x  e.  F  A  e.  x )
26 ssrab 3251 . . . 4  |-  ( F 
C_  { x  e. 
~P X  |  A  e.  x }  <->  ( F  C_ 
~P X  /\  A. x  e.  F  A  e.  x ) )
2722, 25, 26sylanbrc 645 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  C_  { x  e. 
~P X  |  A  e.  x } )
28 ufilmax 17602 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  {
x  e.  ~P X  |  A  e.  x }  e.  ( Fil `  X )  /\  F  C_ 
{ x  e.  ~P X  |  A  e.  x } )  ->  F  =  { x  e.  ~P X  |  A  e.  x } )
291, 19, 27, 28syl3anc 1182 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  =  { x  e.  ~P X  |  A  e.  x } )
30 eqimss 3230 . . . . 5  |-  ( F  =  { x  e. 
~P X  |  A  e.  x }  ->  F  C_ 
{ x  e.  ~P X  |  A  e.  x } )
3130adantl 452 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  F  C_ 
{ x  e.  ~P X  |  A  e.  x } )
3226simprbi 450 . . . 4  |-  ( F 
C_  { x  e. 
~P X  |  A  e.  x }  ->  A. x  e.  F  A  e.  x )
3331, 32syl 15 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  A. x  e.  F  A  e.  x )
34 eleq2 2344 . . . . . 6  |-  ( F  =  { x  e. 
~P X  |  A  e.  x }  ->  ( X  e.  F  <->  X  e.  { x  e.  ~P X  |  A  e.  x } ) )
3534biimpac 472 . . . . 5  |-  ( ( X  e.  F  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  X  e.  { x  e.  ~P X  |  A  e.  x } )
364, 35sylan 457 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  X  e.  { x  e.  ~P X  |  A  e.  x } )
37 eleq2 2344 . . . . . 6  |-  ( x  =  X  ->  ( A  e.  x  <->  A  e.  X ) )
3837elrab 2923 . . . . 5  |-  ( X  e.  { x  e. 
~P X  |  A  e.  x }  <->  ( X  e.  ~P X  /\  A  e.  X ) )
3938simprbi 450 . . . 4  |-  ( X  e.  { x  e. 
~P X  |  A  e.  x }  ->  A  e.  X )
40 elintg 3870 . . . 4  |-  ( A  e.  X  ->  ( A  e.  |^| F  <->  A. x  e.  F  A  e.  x ) )
4136, 39, 403syl 18 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  ( A  e.  |^| F  <->  A. x  e.  F  A  e.  x ) )
4233, 41mpbird 223 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  F  =  { x  e.  ~P X  |  A  e.  x } )  ->  A  e.  |^| F )
4329, 42impbida 805 1  |-  ( F  e.  ( UFil `  X
)  ->  ( A  e.  |^| F  <->  F  =  { x  e.  ~P X  |  A  e.  x } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   {crab 2547    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   |^|cint 3862   ` cfv 5255  (class class class)co 5858   fBascfbas 17518   filGencfg 17519   Filcfil 17540   UFilcufil 17594
This theorem is referenced by:  uffix2  17619  uffixsn  17620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-fbas 17520  df-fg 17521  df-fil 17541  df-ufil 17596
  Copyright terms: Public domain W3C validator