MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uffixsn Structured version   Unicode version

Theorem uffixsn 17957
Description: The singleton of the generator of a fixed ultrafilter is in the filter. (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
uffixsn  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  F
)

Proof of Theorem uffixsn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ufilfil 17936 . . . . . . . 8  |-  ( F  e.  ( UFil `  X
)  ->  F  e.  ( Fil `  X ) )
2 filn0 17894 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
3 intssuni 4072 . . . . . . . 8  |-  ( F  =/=  (/)  ->  |^| F  C_  U. F )
41, 2, 33syl 19 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  U. F )
5 filunibas 17913 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
61, 5syl 16 . . . . . . 7  |-  ( F  e.  ( UFil `  X
)  ->  U. F  =  X )
74, 6sseqtrd 3384 . . . . . 6  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  C_  X )
87sselda 3348 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  X )
98snssd 3943 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  C_  X
)
10 snex 4405 . . . . 5  |-  { A }  e.  _V
1110elpw 3805 . . . 4  |-  ( { A }  e.  ~P X 
<->  { A }  C_  X )
129, 11sylibr 204 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  ~P X )
13 snidg 3839 . . . 4  |-  ( A  e.  |^| F  ->  A  e.  { A } )
1413adantl 453 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  A  e.  { A } )
15 eleq2 2497 . . . 4  |-  ( x  =  { A }  ->  ( A  e.  x  <->  A  e.  { A }
) )
1615elrab 3092 . . 3  |-  ( { A }  e.  {
x  e.  ~P X  |  A  e.  x } 
<->  ( { A }  e.  ~P X  /\  A  e.  { A } ) )
1712, 14, 16sylanbrc 646 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  {
x  e.  ~P X  |  A  e.  x } )
18 uffixfr 17955 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  ( A  e.  |^| F  <->  F  =  { x  e.  ~P X  |  A  e.  x } ) )
1918biimpa 471 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  F  =  { x  e.  ~P X  |  A  e.  x } )
2017, 19eleqtrrd 2513 1  |-  ( ( F  e.  ( UFil `  X )  /\  A  e.  |^| F )  ->  { A }  e.  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   {crab 2709    C_ wss 3320   (/)c0 3628   ~Pcpw 3799   {csn 3814   U.cuni 4015   |^|cint 4050   ` cfv 5454   Filcfil 17877   UFilcufil 17931
This theorem is referenced by:  ufildom1  17958  cfinufil  17960  fin1aufil  17964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-int 4051  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-fbas 16699  df-fg 16700  df-fil 17878  df-ufil 17933
  Copyright terms: Public domain W3C validator