MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilcmp Unicode version

Theorem ufilcmp 17940
Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009.) (Proof shortened by Mario Carneiro, 12-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufilcmp  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fLim  f
)  =/=  (/) ) )
Distinct variable groups:    f, J    f, X

Proof of Theorem ufilcmp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 ufilfil 17812 . . . . . 6  |-  ( f  e.  ( UFil `  U. J )  ->  f  e.  ( Fil `  U. J ) )
2 eqid 2366 . . . . . . 7  |-  U. J  =  U. J
32fclscmpi 17937 . . . . . 6  |-  ( ( J  e.  Comp  /\  f  e.  ( Fil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
41, 3sylan2 460 . . . . 5  |-  ( ( J  e.  Comp  /\  f  e.  ( UFil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
54ralrimiva 2711 . . . 4  |-  ( J  e.  Comp  ->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) )
6 toponuni 16882 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
76fveq2d 5636 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  ( UFil `  X )  =  (
UFil `  U. J ) )
87raleqdv 2827 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
98adantl 452 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
105, 9syl5ibr 212 . . 3  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  ->  A. f  e.  ( UFil `  X
) ( J  fClus  f )  =/=  (/) ) )
11 ufli 17822 . . . . . . 7  |-  ( ( X  e. UFL  /\  g  e.  ( Fil `  X
) )  ->  E. f  e.  ( UFil `  X
) g  C_  f
)
1211adantlr 695 . . . . . 6  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  E. f  e.  ( UFil `  X
) g  C_  f
)
13 r19.29 2768 . . . . . . 7  |-  ( ( A. f  e.  (
UFil `  X )
( J  fClus  f )  =/=  (/)  /\  E. f  e.  ( UFil `  X
) g  C_  f
)  ->  E. f  e.  ( UFil `  X
) ( ( J 
fClus  f )  =/=  (/)  /\  g  C_  f ) )
14 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  J  e.  (TopOn `  X ) )
15 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  g  e.  ( Fil `  X ) )
16 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  g  C_  f )
17 fclsss2 17931 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  g  e.  ( Fil `  X
)  /\  g  C_  f )  ->  ( J  fClus  f )  C_  ( J  fClus  g ) )
1814, 15, 16, 17syl3anc 1183 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  ( J  fClus  f )  C_  ( J  fClus  g ) )
19 ssn0 3575 . . . . . . . . . . . . 13  |-  ( ( ( J  fClus  f ) 
C_  ( J  fClus  g )  /\  ( J 
fClus  f )  =/=  (/) )  -> 
( J  fClus  g )  =/=  (/) )
2019ex 423 . . . . . . . . . . . 12  |-  ( ( J  fClus  f )  C_  ( J  fClus  g )  ->  ( ( J 
fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2118, 20syl 15 . . . . . . . . . . 11  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  ( ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2221expr 598 . . . . . . . . . 10  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( g  C_  f  ->  ( ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) ) )
2322com23 72 . . . . . . . . 9  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( ( J  fClus  f )  =/=  (/)  ->  (
g  C_  f  ->  ( J  fClus  g )  =/=  (/) ) ) )
2423imp3a 420 . . . . . . . 8  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( ( ( J 
fClus  f )  =/=  (/)  /\  g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2524rexlimdva 2752 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  ( E. f  e.  ( UFil `  X ) ( ( J  fClus  f )  =/=  (/)  /\  g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2613, 25syl5 28 . . . . . 6  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  (
( A. f  e.  ( UFil `  X
) ( J  fClus  f )  =/=  (/)  /\  E. f  e.  ( UFil `  X ) g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2712, 26mpan2d 655 . . . . 5  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  ( A. f  e.  ( UFil `  X ) ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2827ralrimdva 2718 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  ->  A. g  e.  ( Fil `  X
) ( J  fClus  g )  =/=  (/) ) )
29 fclscmp 17938 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. g  e.  ( Fil `  X ) ( J  fClus  g )  =/=  (/) ) )
3029adantl 452 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. g  e.  ( Fil `  X ) ( J  fClus  g )  =/=  (/) ) )
3128, 30sylibrd 225 . . 3  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  ->  J  e.  Comp ) )
3210, 31impbid 183 . 2  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fClus  f )  =/=  (/) ) )
33 uffclsflim 17939 . . . 4  |-  ( f  e.  ( UFil `  X
)  ->  ( J  fClus  f )  =  ( J  fLim  f )
)
3433neeq1d 2542 . . 3  |-  ( f  e.  ( UFil `  X
)  ->  ( ( J  fClus  f )  =/=  (/) 
<->  ( J  fLim  f
)  =/=  (/) ) )
3534ralbiia 2660 . 2  |-  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  X
) ( J  fLim  f )  =/=  (/) )
3632, 35syl6bb 252 1  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fLim  f
)  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1715    =/= wne 2529   A.wral 2628   E.wrex 2629    C_ wss 3238   (/)c0 3543   U.cuni 3929   ` cfv 5358  (class class class)co 5981  TopOnctopon 16849   Compccmp 17330   Filcfil 17753   UFilcufil 17807  UFLcufl 17808    fLim cflim 17842    fClus cfcls 17844
This theorem is referenced by:  alexsub  17952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-recs 6530  df-rdg 6565  df-1o 6621  df-2o 6622  df-oadd 6625  df-er 6802  df-map 6917  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-fi 7312  df-fbas 16590  df-fg 16591  df-top 16853  df-topon 16856  df-cld 16973  df-ntr 16974  df-cls 16975  df-nei 17052  df-cmp 17331  df-fil 17754  df-ufil 17809  df-ufl 17810  df-flim 17847  df-fcls 17849
  Copyright terms: Public domain W3C validator