MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilcmp Unicode version

Theorem ufilcmp 17727
Description: A space is compact iff every ultrafilter converges. (Contributed by Jeff Hankins, 11-Dec-2009.) (Proof shortened by Mario Carneiro, 12-Apr-2015.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
ufilcmp  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fLim  f
)  =/=  (/) ) )
Distinct variable groups:    f, J    f, X

Proof of Theorem ufilcmp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 ufilfil 17599 . . . . . 6  |-  ( f  e.  ( UFil `  U. J )  ->  f  e.  ( Fil `  U. J ) )
2 eqid 2283 . . . . . . 7  |-  U. J  =  U. J
32fclscmpi 17724 . . . . . 6  |-  ( ( J  e.  Comp  /\  f  e.  ( Fil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
41, 3sylan2 460 . . . . 5  |-  ( ( J  e.  Comp  /\  f  e.  ( UFil `  U. J ) )  -> 
( J  fClus  f )  =/=  (/) )
54ralrimiva 2626 . . . 4  |-  ( J  e.  Comp  ->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) )
6 toponuni 16665 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
76fveq2d 5529 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  ( UFil `  X )  =  (
UFil `  U. J ) )
87raleqdv 2742 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
98adantl 452 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  U. J ) ( J 
fClus  f )  =/=  (/) ) )
105, 9syl5ibr 212 . . 3  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  ->  A. f  e.  ( UFil `  X
) ( J  fClus  f )  =/=  (/) ) )
11 ufli 17609 . . . . . . 7  |-  ( ( X  e. UFL  /\  g  e.  ( Fil `  X
) )  ->  E. f  e.  ( UFil `  X
) g  C_  f
)
1211adantlr 695 . . . . . 6  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  E. f  e.  ( UFil `  X
) g  C_  f
)
13 r19.29 2683 . . . . . . 7  |-  ( ( A. f  e.  (
UFil `  X )
( J  fClus  f )  =/=  (/)  /\  E. f  e.  ( UFil `  X
) g  C_  f
)  ->  E. f  e.  ( UFil `  X
) ( ( J 
fClus  f )  =/=  (/)  /\  g  C_  f ) )
14 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  J  e.  (TopOn `  X ) )
15 simplr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  g  e.  ( Fil `  X ) )
16 simprr 733 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  g  C_  f )
17 fclsss2 17718 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  g  e.  ( Fil `  X
)  /\  g  C_  f )  ->  ( J  fClus  f )  C_  ( J  fClus  g ) )
1814, 15, 16, 17syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  ( J  fClus  f )  C_  ( J  fClus  g ) )
19 ssn0 3487 . . . . . . . . . . . . 13  |-  ( ( ( J  fClus  f ) 
C_  ( J  fClus  g )  /\  ( J 
fClus  f )  =/=  (/) )  -> 
( J  fClus  g )  =/=  (/) )
2019ex 423 . . . . . . . . . . . 12  |-  ( ( J  fClus  f )  C_  ( J  fClus  g )  ->  ( ( J 
fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2118, 20syl 15 . . . . . . . . . . 11  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  ( f  e.  (
UFil `  X )  /\  g  C_  f ) )  ->  ( ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2221expr 598 . . . . . . . . . 10  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( g  C_  f  ->  ( ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) ) )
2322com23 72 . . . . . . . . 9  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( ( J  fClus  f )  =/=  (/)  ->  (
g  C_  f  ->  ( J  fClus  g )  =/=  (/) ) ) )
2423imp3a 420 . . . . . . . 8  |-  ( ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X ) )  /\  g  e.  ( Fil `  X ) )  /\  f  e.  ( UFil `  X ) )  -> 
( ( ( J 
fClus  f )  =/=  (/)  /\  g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2524rexlimdva 2667 . . . . . . 7  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  ( E. f  e.  ( UFil `  X ) ( ( J  fClus  f )  =/=  (/)  /\  g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2613, 25syl5 28 . . . . . 6  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  (
( A. f  e.  ( UFil `  X
) ( J  fClus  f )  =/=  (/)  /\  E. f  e.  ( UFil `  X ) g  C_  f )  ->  ( J  fClus  g )  =/=  (/) ) )
2712, 26mpan2d 655 . . . . 5  |-  ( ( ( X  e. UFL  /\  J  e.  (TopOn `  X
) )  /\  g  e.  ( Fil `  X
) )  ->  ( A. f  e.  ( UFil `  X ) ( J  fClus  f )  =/=  (/)  ->  ( J  fClus  g )  =/=  (/) ) )
2827ralrimdva 2633 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  ->  A. g  e.  ( Fil `  X
) ( J  fClus  g )  =/=  (/) ) )
29 fclscmp 17725 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  ( J  e.  Comp  <->  A. g  e.  ( Fil `  X ) ( J  fClus  g )  =/=  (/) ) )
3029adantl 452 . . . 4  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. g  e.  ( Fil `  X ) ( J  fClus  g )  =/=  (/) ) )
3128, 30sylibrd 225 . . 3  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  ->  J  e.  Comp ) )
3210, 31impbid 183 . 2  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fClus  f )  =/=  (/) ) )
33 uffclsflim 17726 . . . 4  |-  ( f  e.  ( UFil `  X
)  ->  ( J  fClus  f )  =  ( J  fLim  f )
)
3433neeq1d 2459 . . 3  |-  ( f  e.  ( UFil `  X
)  ->  ( ( J  fClus  f )  =/=  (/) 
<->  ( J  fLim  f
)  =/=  (/) ) )
3534ralbiia 2575 . 2  |-  ( A. f  e.  ( UFil `  X ) ( J 
fClus  f )  =/=  (/)  <->  A. f  e.  ( UFil `  X
) ( J  fLim  f )  =/=  (/) )
3632, 35syl6bb 252 1  |-  ( ( X  e. UFL  /\  J  e.  (TopOn `  X )
)  ->  ( J  e.  Comp  <->  A. f  e.  (
UFil `  X )
( J  fLim  f
)  =/=  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   U.cuni 3827   ` cfv 5255  (class class class)co 5858  TopOnctopon 16632   Compccmp 17113   Filcfil 17540   UFilcufil 17594  UFLcufl 17595    fLim cflim 17629    fClus cfcls 17631
This theorem is referenced by:  alexsub  17739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-top 16636  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cmp 17114  df-fbas 17520  df-fg 17521  df-fil 17541  df-ufil 17596  df-ufl 17597  df-flim 17634  df-fcls 17636
  Copyright terms: Public domain W3C validator