MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufildom1 Unicode version

Theorem ufildom1 17879
Description: An ultrafilter is generated by at most one element (because free ultrafilters have no generators and fixed ultrafilters have exactly one). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
ufildom1  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  ~<_  1o )

Proof of Theorem ufildom1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq1 4156 . 2  |-  ( |^| F  =  (/)  ->  ( |^| F  ~<_  1o  <->  (/)  ~<_  1o ) )
2 uffixsn 17878 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  { x }  e.  F )
3 intss1 4007 . . . . . . . . 9  |-  ( { x }  e.  F  ->  |^| F  C_  { x } )
42, 3syl 16 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  |^| F  C_  { x } )
5 simpr 448 . . . . . . . . 9  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  x  e.  |^| F )
65snssd 3886 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  { x }  C_  |^| F )
74, 6eqssd 3308 . . . . . . 7  |-  ( ( F  e.  ( UFil `  X )  /\  x  e.  |^| F )  ->  |^| F  =  { x } )
87ex 424 . . . . . 6  |-  ( F  e.  ( UFil `  X
)  ->  ( x  e.  |^| F  ->  |^| F  =  { x } ) )
98eximdv 1629 . . . . 5  |-  ( F  e.  ( UFil `  X
)  ->  ( E. x  x  e.  |^| F  ->  E. x |^| F  =  { x } ) )
10 n0 3580 . . . . 5  |-  ( |^| F  =/=  (/)  <->  E. x  x  e. 
|^| F )
11 en1 7110 . . . . 5  |-  ( |^| F  ~~  1o  <->  E. x |^| F  =  { x } )
129, 10, 113imtr4g 262 . . . 4  |-  ( F  e.  ( UFil `  X
)  ->  ( |^| F  =/=  (/)  ->  |^| F  ~~  1o ) )
1312imp 419 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  |^| F  =/=  (/) )  ->  |^| F  ~~  1o )
14 endom 7070 . . 3  |-  ( |^| F  ~~  1o  ->  |^| F  ~<_  1o )
1513, 14syl 16 . 2  |-  ( ( F  e.  ( UFil `  X )  /\  |^| F  =/=  (/) )  ->  |^| F  ~<_  1o )
16 1on 6667 . . 3  |-  1o  e.  On
17 0domg 7170 . . 3  |-  ( 1o  e.  On  ->  (/)  ~<_  1o )
1816, 17mp1i 12 . 2  |-  ( F  e.  ( UFil `  X
)  ->  (/)  ~<_  1o )
191, 15, 18pm2.61ne 2625 1  |-  ( F  e.  ( UFil `  X
)  ->  |^| F  ~<_  1o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717    =/= wne 2550    C_ wss 3263   (/)c0 3571   {csn 3757   |^|cint 3992   class class class wbr 4153   Oncon0 4522   ` cfv 5394   1oc1o 6653    ~~ cen 7042    ~<_ cdom 7043   UFilcufil 17852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-suc 4528  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1o 6660  df-en 7046  df-dom 7047  df-fbas 16623  df-fg 16624  df-fil 17799  df-ufil 17854
  Copyright terms: Public domain W3C validator