MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufilen Unicode version

Theorem ufilen 17641
Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.)
Assertion
Ref Expression
ufilen  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) A. x  e.  f  x  ~~  X
)
Distinct variable group:    x, f, X

Proof of Theorem ufilen
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 reldom 6885 . . . . . 6  |-  Rel  ~<_
21brrelex2i 4746 . . . . 5  |-  ( om  ~<_  X  ->  X  e.  _V )
3 numth3 8113 . . . . 5  |-  ( X  e.  _V  ->  X  e.  dom  card )
42, 3syl 15 . . . 4  |-  ( om  ~<_  X  ->  X  e.  dom  card )
5 csdfil 17605 . . . 4  |-  ( ( X  e.  dom  card  /\ 
om  ~<_  X )  ->  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  e.  ( Fil `  X
) )
64, 5mpancom 650 . . 3  |-  ( om  ~<_  X  ->  { y  e.  ~P X  |  ( X  \  y ) 
~<  X }  e.  ( Fil `  X ) )
7 filssufil 17623 . . 3  |-  ( { y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f
)
86, 7syl 15 . 2  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f
)
9 elfvex 5571 . . . . . . 7  |-  ( f  e.  ( UFil `  X
)  ->  X  e.  _V )
109ad2antlr 707 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  X  e.  _V )
11 ufilfil 17615 . . . . . . . 8  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( Fil `  X ) )
12 filelss 17563 . . . . . . . 8  |-  ( ( f  e.  ( Fil `  X )  /\  x  e.  f )  ->  x  C_  X )
1311, 12sylan 457 . . . . . . 7  |-  ( ( f  e.  ( UFil `  X )  /\  x  e.  f )  ->  x  C_  X )
1413adantll 694 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  x  C_  X )
15 ssdomg 6923 . . . . . 6  |-  ( X  e.  _V  ->  (
x  C_  X  ->  x  ~<_  X ) )
1610, 14, 15sylc 56 . . . . 5  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  x  ~<_  X )
17 filfbas 17559 . . . . . . . . 9  |-  ( f  e.  ( Fil `  X
)  ->  f  e.  ( fBas `  X )
)
1811, 17syl 15 . . . . . . . 8  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( fBas `  X )
)
1918adantl 452 . . . . . . 7  |-  ( ( om  ~<_  X  /\  f  e.  ( UFil `  X
) )  ->  f  e.  ( fBas `  X
) )
20 fbncp 17550 . . . . . . 7  |-  ( ( f  e.  ( fBas `  X )  /\  x  e.  f )  ->  -.  ( X  \  x
)  e.  f )
2119, 20sylan 457 . . . . . 6  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  -.  ( X  \  x )  e.  f )
22 difss 3316 . . . . . . . . . . . . . 14  |-  ( X 
\  x )  C_  X
23 elpw2g 4190 . . . . . . . . . . . . . 14  |-  ( X  e.  _V  ->  (
( X  \  x
)  e.  ~P X  <->  ( X  \  x ) 
C_  X ) )
2422, 23mpbiri 224 . . . . . . . . . . . . 13  |-  ( X  e.  _V  ->  ( X  \  x )  e. 
~P X )
25243ad2ant1 976 . . . . . . . . . . . 12  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  x )  e. 
~P X )
26 simp2 956 . . . . . . . . . . . . . 14  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  x  C_  X )
27 dfss4 3416 . . . . . . . . . . . . . 14  |-  ( x 
C_  X  <->  ( X  \  ( X  \  x
) )  =  x )
2826, 27sylib 188 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  ( X  \  x ) )  =  x )
29 simp3 957 . . . . . . . . . . . . 13  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  x  ~<  X )
3028, 29eqbrtrd 4059 . . . . . . . . . . . 12  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  ( X  \  x ) )  ~<  X )
31 difeq2 3301 . . . . . . . . . . . . . 14  |-  ( y  =  ( X  \  x )  ->  ( X  \  y )  =  ( X  \  ( X  \  x ) ) )
3231breq1d 4049 . . . . . . . . . . . . 13  |-  ( y  =  ( X  \  x )  ->  (
( X  \  y
)  ~<  X  <->  ( X  \  ( X  \  x
) )  ~<  X ) )
3332elrab 2936 . . . . . . . . . . . 12  |-  ( ( X  \  x )  e.  { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  <->  ( ( X  \  x )  e. 
~P X  /\  ( X  \  ( X  \  x ) )  ~<  X ) )
3425, 30, 33sylanbrc 645 . . . . . . . . . . 11  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( X  \  x )  e. 
{ y  e.  ~P X  |  ( X  \  y )  ~<  X }
)
35 ssel 3187 . . . . . . . . . . 11  |-  ( { y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  C_  f  ->  ( ( X  \  x )  e. 
{ y  e.  ~P X  |  ( X  \  y )  ~<  X }  ->  ( X  \  x
)  e.  f ) )
3634, 35syl5com 26 . . . . . . . . . 10  |-  ( ( X  e.  _V  /\  x  C_  X  /\  x  ~<  X )  ->  ( { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f  ->  ( X  \  x )  e.  f ) )
37363expa 1151 . . . . . . . . 9  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  x  ~<  X )  ->  ( { y  e.  ~P X  | 
( X  \  y
)  ~<  X }  C_  f  ->  ( X  \  x )  e.  f ) )
3837impancom 427 . . . . . . . 8  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f )  ->  (
x  ~<  X  ->  ( X  \  x )  e.  f ) )
3938con3d 125 . . . . . . 7  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f )  ->  ( -.  ( X  \  x
)  e.  f  ->  -.  x  ~<  X ) )
4039impancom 427 . . . . . 6  |-  ( ( ( X  e.  _V  /\  x  C_  X )  /\  -.  ( X  \  x )  e.  f )  ->  ( {
y  e.  ~P X  |  ( X  \ 
y )  ~<  X }  C_  f  ->  -.  x  ~<  X ) )
4110, 14, 21, 40syl21anc 1181 . . . . 5  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  ( { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f  ->  -.  x  ~<  X ) )
42 bren2 6908 . . . . . 6  |-  ( x 
~~  X  <->  ( x  ~<_  X  /\  -.  x  ~<  X ) )
4342simplbi2 608 . . . . 5  |-  ( x  ~<_  X  ->  ( -.  x  ~<  X  ->  x  ~~  X ) )
4416, 41, 43sylsyld 52 . . . 4  |-  ( ( ( om  ~<_  X  /\  f  e.  ( UFil `  X ) )  /\  x  e.  f )  ->  ( { y  e. 
~P X  |  ( X  \  y ) 
~<  X }  C_  f  ->  x  ~~  X ) )
4544ralrimdva 2646 . . 3  |-  ( ( om  ~<_  X  /\  f  e.  ( UFil `  X
) )  ->  ( { y  e.  ~P X  |  ( X  \  y )  ~<  X }  C_  f  ->  A. x  e.  f  x  ~~  X ) )
4645reximdva 2668 . 2  |-  ( om  ~<_  X  ->  ( E. f  e.  ( UFil `  X ) { y  e.  ~P X  | 
( X  \  y
)  ~<  X }  C_  f  ->  E. f  e.  (
UFil `  X ) A. x  e.  f  x  ~~  X ) )
478, 46mpd 14 1  |-  ( om  ~<_  X  ->  E. f  e.  ( UFil `  X
) A. x  e.  f  x  ~~  X
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    \ cdif 3162    C_ wss 3165   ~Pcpw 3638   class class class wbr 4039   omcom 4672   dom cdm 4705   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   cardccrd 7584   fBascfbas 17534   Filcfil 17556   UFilcufil 17610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-ac2 8105
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-rpss 6293  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-oi 7241  df-card 7588  df-ac 7759  df-cda 7810  df-fbas 17536  df-fg 17537  df-fil 17557  df-ufil 17612
  Copyright terms: Public domain W3C validator