MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufinffr Unicode version

Theorem ufinffr 17882
Description: An infinite subset is contained in a free ultrafilter. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Mario Carneiro, 4-Dec-2013.)
Assertion
Ref Expression
ufinffr  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) )
Distinct variable groups:    A, f    B, f    f, X

Proof of Theorem ufinffr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ominf 7257 . . . . 5  |-  -.  om  e.  Fin
2 domfi 7266 . . . . . 6  |-  ( ( A  e.  Fin  /\  om  ~<_  A )  ->  om  e.  Fin )
32expcom 425 . . . . 5  |-  ( om  ~<_  A  ->  ( A  e.  Fin  ->  om  e.  Fin ) )
41, 3mtoi 171 . . . 4  |-  ( om  ~<_  A  ->  -.  A  e.  Fin )
5 cfinfil 17846 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
64, 5syl3an3 1219 . . 3  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X ) )
7 filssufil 17865 . . 3  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  C_  f )
86, 7syl 16 . 2  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  C_  f )
9 elpw2g 4304 . . . . . . . 8  |-  ( X  e.  B  ->  ( A  e.  ~P X  <->  A 
C_  X ) )
109biimpar 472 . . . . . . 7  |-  ( ( X  e.  B  /\  A  C_  X )  ->  A  e.  ~P X
)
11103adant3 977 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  e.  ~P X )
12 0fin 7272 . . . . . . 7  |-  (/)  e.  Fin
1312a1i 11 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  (/)  e.  Fin )
14 difeq2 3402 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
15 difid 3639 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
1614, 15syl6eq 2435 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
1716eleq1d 2453 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  e.  Fin  <->  (/)  e.  Fin ) )
1817elrab 3035 . . . . . 6  |-  ( A  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( A  e.  ~P X  /\  (/)  e.  Fin ) )
1911, 13, 18sylanbrc 646 . . . . 5  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
20 ssel 3285 . . . . 5  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  ( A  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  ->  A  e.  f ) )
2119, 20syl5com 28 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  A  e.  f ) )
22 intss 4013 . . . . . 6  |-  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  C_ 
|^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
23 neldifsn 3872 . . . . . . . . . 10  |-  -.  y  e.  ( A  \  {
y } )
24 elinti 4001 . . . . . . . . . 10  |-  ( y  e.  |^| { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  ->  ( ( A  \  {
y } )  e. 
{ x  e.  ~P X  |  ( A  \  x )  e.  Fin }  ->  y  e.  ( A  \  { y } ) ) )
2523, 24mtoi 171 . . . . . . . . 9  |-  ( y  e.  |^| { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  ->  -.  ( A  \  {
y } )  e. 
{ x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
26 simp2 958 . . . . . . . . . . . 12  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  A  C_  X )
2726ssdifssd 3428 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  C_  X )
28 elpw2g 4304 . . . . . . . . . . . 12  |-  ( X  e.  B  ->  (
( A  \  {
y } )  e. 
~P X  <->  ( A  \  { y } ) 
C_  X ) )
29283ad2ant1 978 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  (
( A  \  {
y } )  e. 
~P X  <->  ( A  \  { y } ) 
C_  X ) )
3027, 29mpbird 224 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  e.  ~P X
)
31 snfi 7123 . . . . . . . . . . . 12  |-  { y }  e.  Fin
32 eldif 3273 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  <-> 
( x  e.  A  /\  -.  x  e.  ( A  \  { y } ) ) )
33 eldif 3273 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( A  \  { y } )  <-> 
( x  e.  A  /\  -.  x  e.  {
y } ) )
3433notbii 288 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  e.  ( A 
\  { y } )  <->  -.  ( x  e.  A  /\  -.  x  e.  { y } ) )
35 iman 414 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  A  ->  x  e.  { y } )  <->  -.  (
x  e.  A  /\  -.  x  e.  { y } ) )
3634, 35bitr4i 244 . . . . . . . . . . . . . . . 16  |-  ( -.  x  e.  ( A 
\  { y } )  <->  ( x  e.  A  ->  x  e.  { y } ) )
3736anbi2i 676 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  -.  x  e.  ( A  \  { y } ) )  <->  ( x  e.  A  /\  (
x  e.  A  ->  x  e.  { y } ) ) )
3832, 37bitri 241 . . . . . . . . . . . . . 14  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  <-> 
( x  e.  A  /\  ( x  e.  A  ->  x  e.  { y } ) ) )
39 pm3.35 571 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  ( x  e.  A  ->  x  e.  { y } ) )  ->  x  e.  { y } )
4038, 39sylbi 188 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  \ 
( A  \  {
y } ) )  ->  x  e.  {
y } )
4140ssriv 3295 . . . . . . . . . . . 12  |-  ( A 
\  ( A  \  { y } ) )  C_  { y }
42 ssfi 7265 . . . . . . . . . . . 12  |-  ( ( { y }  e.  Fin  /\  ( A  \ 
( A  \  {
y } ) ) 
C_  { y } )  ->  ( A  \  ( A  \  {
y } ) )  e.  Fin )
4331, 41, 42mp2an 654 . . . . . . . . . . 11  |-  ( A 
\  ( A  \  { y } ) )  e.  Fin
4443a1i 11 . . . . . . . . . 10  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  ( A  \  { y } ) )  e.  Fin )
45 difeq2 3402 . . . . . . . . . . . 12  |-  ( x  =  ( A  \  { y } )  ->  ( A  \  x )  =  ( A  \  ( A 
\  { y } ) ) )
4645eleq1d 2453 . . . . . . . . . . 11  |-  ( x  =  ( A  \  { y } )  ->  ( ( A 
\  x )  e. 
Fin 
<->  ( A  \  ( A  \  { y } ) )  e.  Fin ) )
4746elrab 3035 . . . . . . . . . 10  |-  ( ( A  \  { y } )  e.  {
x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <-> 
( ( A  \  { y } )  e.  ~P X  /\  ( A  \  ( A  \  { y } ) )  e.  Fin ) )
4830, 44, 47sylanbrc 646 . . . . . . . . 9  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( A  \  { y } )  e.  { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
4925, 48nsyl3 113 . . . . . . . 8  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  -.  y  e.  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin } )
5049eq0rdv 3605 . . . . . . 7  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  =  (/) )
5150sseq2d 3319 . . . . . 6  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( |^| f  C_  |^| { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <->  |^| f  C_  (/) ) )
5222, 51syl5ib 211 . . . . 5  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  C_  (/) ) )
53 ss0 3601 . . . . 5  |-  ( |^| f  C_  (/)  ->  |^| f  =  (/) )
5452, 53syl6 31 . . . 4  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  |^| f  =  (/) ) )
5521, 54jcad 520 . . 3  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  ( A  e.  f  /\  |^| f  =  (/) ) ) )
5655reximdv 2760 . 2  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  ( E. f  e.  ( UFil `  X ) { x  e.  ~P X  |  ( A  \  x )  e.  Fin } 
C_  f  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) ) )
578, 56mpd 15 1  |-  ( ( X  e.  B  /\  A  C_  X  /\  om  ~<_  A )  ->  E. f  e.  ( UFil `  X
) ( A  e.  f  /\  |^| f  =  (/) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   E.wrex 2650   {crab 2653    \ cdif 3260    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   {csn 3757   |^|cint 3992   class class class wbr 4153   omcom 4785   ` cfv 5394    ~<_ cdom 7043   Fincfn 7045   Filcfil 17798   UFilcufil 17852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-ac2 8276
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-rpss 6458  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-card 7759  df-ac 7930  df-cda 7981  df-fbas 16623  df-fg 16624  df-fil 17799  df-ufil 17854
  Copyright terms: Public domain W3C validator