MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm0 Structured version   Unicode version

Theorem ulm0 20307
Description: Every function converges uniformly on the empty set. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulm0.z  |-  Z  =  ( ZZ>= `  M )
ulm0.m  |-  ( ph  ->  M  e.  ZZ )
ulm0.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
ulm0.g  |-  ( ph  ->  G : S --> CC )
Assertion
Ref Expression
ulm0  |-  ( (
ph  /\  S  =  (/) )  ->  F ( ~~> u `  S ) G )

Proof of Theorem ulm0
Dummy variables  j 
k  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulm0.m . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
2 uzid 10500 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
31, 2syl 16 . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
4 ulm0.z . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
53, 4syl6eleqr 2527 . . . . . 6  |-  ( ph  ->  M  e.  Z )
6 ne0i 3634 . . . . . 6  |-  ( M  e.  Z  ->  Z  =/=  (/) )
75, 6syl 16 . . . . 5  |-  ( ph  ->  Z  =/=  (/) )
87adantr 452 . . . 4  |-  ( (
ph  /\  S  =  (/) )  ->  Z  =/=  (/) )
9 ral0 3732 . . . . . . 7  |-  A. z  e.  (/)  ( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  x
10 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  S  =  (/) )  ->  S  =  (/) )
1110raleqdv 2910 . . . . . . 7  |-  ( (
ph  /\  S  =  (/) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  x  <->  A. z  e.  (/)  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
) )
129, 11mpbiri 225 . . . . . 6  |-  ( (
ph  /\  S  =  (/) )  ->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)
1312ralrimivw 2790 . . . . 5  |-  ( (
ph  /\  S  =  (/) )  ->  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x )
1413ralrimivw 2790 . . . 4  |-  ( (
ph  /\  S  =  (/) )  ->  A. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x )
15 r19.2z 3717 . . . 4  |-  ( ( Z  =/=  (/)  /\  A. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x )
168, 14, 15syl2anc 643 . . 3  |-  ( (
ph  /\  S  =  (/) )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x )
1716ralrimivw 2790 . 2  |-  ( (
ph  /\  S  =  (/) )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x )
181adantr 452 . . 3  |-  ( (
ph  /\  S  =  (/) )  ->  M  e.  ZZ )
19 ulm0.f . . . 4  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
2019adantr 452 . . 3  |-  ( (
ph  /\  S  =  (/) )  ->  F : Z
--> ( CC  ^m  S
) )
21 eqidd 2437 . . 3  |-  ( ( ( ph  /\  S  =  (/) )  /\  (
k  e.  Z  /\  z  e.  S )
)  ->  ( ( F `  k ) `  z )  =  ( ( F `  k
) `  z )
)
22 eqidd 2437 . . 3  |-  ( ( ( ph  /\  S  =  (/) )  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
23 ulm0.g . . . 4  |-  ( ph  ->  G : S --> CC )
2423adantr 452 . . 3  |-  ( (
ph  /\  S  =  (/) )  ->  G : S
--> CC )
25 0ex 4339 . . . 4  |-  (/)  e.  _V
2610, 25syl6eqel 2524 . . 3  |-  ( (
ph  /\  S  =  (/) )  ->  S  e.  _V )
274, 18, 20, 21, 22, 24, 26ulm2 20301 . 2  |-  ( (
ph  /\  S  =  (/) )  ->  ( F
( ~~> u `  S
) G  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  x ) )
2817, 27mpbird 224 1  |-  ( (
ph  /\  S  =  (/) )  ->  F ( ~~> u `  S ) G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956   (/)c0 3628   class class class wbr 4212   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   CCcc 8988    < clt 9120    - cmin 9291   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   abscabs 12039   ~~> uculm 20292
This theorem is referenced by:  pserulm  20338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-pre-lttri 9064  ax-pre-lttrn 9065
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-er 6905  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-neg 9294  df-z 10283  df-uz 10489  df-ulm 20293
  Copyright terms: Public domain W3C validator