MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcaulem Structured version   Unicode version

Theorem ulmcaulem 20310
Description: Lemma for ulmcau 20311 and ulmcau2 20312: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 12159. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
ulmcau.z  |-  Z  =  ( ZZ>= `  M )
ulmcau.m  |-  ( ph  ->  M  e.  ZZ )
ulmcau.s  |-  ( ph  ->  S  e.  V )
ulmcau.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
Assertion
Ref Expression
ulmcaulem  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
Distinct variable groups:    j, k, m, x, z, F    ph, j,
k, m, x, z    S, j, k, m, x, z    j, Z, k, m, x, z    j, M, k, z
Allowed substitution hints:    M( x, m)    V( x, z, j, k, m)

Proof of Theorem ulmcaulem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 breq2 4216 . . . . . 6  |-  ( x  =  w  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  w
) )
21ralbidv 2725 . . . . 5  |-  ( x  =  w  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  w
) )
32rexralbidv 2749 . . . 4  |-  ( x  =  w  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
w ) )
43cbvralv 2932 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x  <->  A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w )
5 rphalfcl 10636 . . . . . . 7  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
6 breq2 4216 . . . . . . . . . 10  |-  ( w  =  ( x  / 
2 )  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  w  <->  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
76ralbidv 2725 . . . . . . . . 9  |-  ( w  =  ( x  / 
2 )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  <->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
87rexralbidv 2749 . . . . . . . 8  |-  ( w  =  ( x  / 
2 )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
w  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) ) )
98rspcv 3048 . . . . . . 7  |-  ( ( x  /  2 )  e.  RR+  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
105, 9syl 16 . . . . . 6  |-  ( x  e.  RR+  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
1110adantl 453 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
12 fveq2 5728 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1312fveq1d 5730 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( F `  k
) `  z )  =  ( ( F `
 m ) `  z ) )
1413oveq1d 6096 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) )  =  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )
1514fveq2d 5732 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  =  ( abs `  (
( ( F `  m ) `  z
)  -  ( ( F `  j ) `
 z ) ) ) )
1615breq1d 4222 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  <->  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
1716ralbidv 2725 . . . . . . . . 9  |-  ( k  =  m  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 )  <->  A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
1817cbvralv 2932 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  <->  A. m  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )
1918biimpi 187 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )
20 uzss 10506 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
2120ad2antlr 708 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
22 ssralv 3407 . . . . . . . . . . . . . 14  |-  ( (
ZZ>= `  k )  C_  ( ZZ>= `  j )  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 )  ->  A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
2321, 22syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) ) )
24 r19.26 2838 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  S  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  <->  ( A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
25 ulmcau.f . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
2625adantr 452 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  RR+ )  ->  F : Z
--> ( CC  ^m  S
) )
2726ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  F : Z
--> ( CC  ^m  S
) )
28 ulmcau.z . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  Z  =  ( ZZ>= `  M )
2928uztrn2 10503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
3029adantll 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  k  e.  Z
)
3128uztrn2 10503 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( k  e.  Z  /\  m  e.  ( ZZ>= `  k ) )  ->  m  e.  Z )
3230, 31sylan 458 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  m  e.  Z )
3327, 32ffvelrnd 5871 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  m )  e.  ( CC  ^m  S ) )
34 elmapi 7038 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  m )  e.  ( CC  ^m  S )  ->  ( F `  m ) : S --> CC )
3533, 34syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  m ) : S --> CC )
3635ffvelrnda 5870 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( F `  m
) `  z )  e.  CC )
3726ffvelrnda 5870 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( F `  j )  e.  ( CC  ^m  S
) )
3837ad2antrr 707 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  j )  e.  ( CC  ^m  S ) )
39 elmapi 7038 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  j )  e.  ( CC  ^m  S )  ->  ( F `  j ) : S --> CC )
4038, 39syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  j ) : S --> CC )
4140ffvelrnda 5870 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( F `  j
) `  z )  e.  CC )
4236, 41abssubd 12255 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  =  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) ) )
4342breq1d 4222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( abs `  (
( ( F `  m ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  <->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  (
x  /  2 ) ) )
4443biimpd 199 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( abs `  (
( ( F `  m ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  -> 
( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  ( x  /  2 ) ) )
45 ffvelrn 5868 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F : Z --> ( CC 
^m  S )  /\  k  e.  Z )  ->  ( F `  k
)  e.  ( CC 
^m  S ) )
4626, 29, 45syl2an 464 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  ( CC  ^m  S ) )
4746anassrs 630 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( F `  k )  e.  ( CC  ^m  S ) )
4847adantr 452 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  k )  e.  ( CC  ^m  S ) )
49 elmapi 7038 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
5048, 49syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  k ) : S --> CC )
5150ffvelrnda 5870 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( F `  k
) `  z )  e.  CC )
52 rpre 10618 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR+  ->  x  e.  RR )
5352ad2antlr 708 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  x  e.  RR )
5453ad3antrrr 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  x  e.  RR )
55 abs3lem 12142 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F `
 k ) `  z )  e.  CC  /\  ( ( F `  m ) `  z
)  e.  CC )  /\  ( ( ( F `  j ) `
 z )  e.  CC  /\  x  e.  RR ) )  -> 
( ( ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  /\  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x ) )
5651, 36, 41, 54, 55syl22anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  j
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x ) )
5744, 56sylan2d 469 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x ) )
5857ralimdva 2784 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( A. z  e.  S  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  ->  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
5924, 58syl5bir 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 )  /\  A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )  ->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
6059expdimp 427 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
6160an32s 780 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  /\  m  e.  ( ZZ>= `  k )
)  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
6261ralimdva 2784 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
6323, 62syld 42 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
6463impancom 428 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  -> 
( A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  ->  A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
6564an32s 780 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  ->  A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
6665ralimdva 2784 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
6766ex 424 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) ) )
6867com23 74 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) ) )
6919, 68mpdi 40 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
7069reximdva 2818 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
7111, 70syld 42 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
7271ralrimdva 2796 . . 3  |-  ( ph  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
w  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
734, 72syl5bi 209 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
74 eluzelz 10496 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
7574, 28eleq2s 2528 . . . . . . . 8  |-  ( j  e.  Z  ->  j  e.  ZZ )
76 uzid 10500 . . . . . . . 8  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
7775, 76syl 16 . . . . . . 7  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
7877adantl 453 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  j )
)
79 fveq2 5728 . . . . . . . 8  |-  ( k  =  j  ->  ( ZZ>=
`  k )  =  ( ZZ>= `  j )
)
80 fveq2 5728 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
8180fveq1d 5730 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( F `  k
) `  z )  =  ( ( F `
 j ) `  z ) )
8281oveq1d 6096 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) )  =  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )
8382fveq2d 5732 . . . . . . . . . 10  |-  ( k  =  j  ->  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  =  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) ) )
8483breq1d 4222 . . . . . . . . 9  |-  ( k  =  j  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
8584ralbidv 2725 . . . . . . . 8  |-  ( k  =  j  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
8679, 85raleqbidv 2916 . . . . . . 7  |-  ( k  =  j  ->  ( A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x  <->  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
8786rspcv 3048 . . . . . 6  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x  ->  A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  j
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
8878, 87syl 16 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  ->  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
89 fveq2 5728 . . . . . . . . . . . 12  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
9089fveq1d 5730 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( F `  m
) `  z )  =  ( ( F `
 k ) `  z ) )
9190oveq2d 6097 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) )  =  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )
9291fveq2d 5732 . . . . . . . . 9  |-  ( m  =  k  ->  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  =  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  k ) `
 z ) ) ) )
9392breq1d 4222 . . . . . . . 8  |-  ( m  =  k  ->  (
( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  <  x
) )
9493ralbidv 2725 . . . . . . 7  |-  ( m  =  k  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  j
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  <  x
) )
9594cbvralv 2932 . . . . . 6  |-  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  <  x
)
9625ffvelrnda 5870 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  ( CC  ^m  S
) )
9796adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  j )  e.  ( CC  ^m  S ) )
9897, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  j ) : S --> CC )
9998ffvelrnda 5870 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( ( F `  j ) `  z )  e.  CC )
10025, 29, 45syl2an 464 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
101100anassrs 630 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  ( CC  ^m  S ) )
102101, 49syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k ) : S --> CC )
103102ffvelrnda 5870 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( ( F `  k ) `  z )  e.  CC )
10499, 103abssubd 12255 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  =  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) ) )
105104breq1d 4222 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )  < 
x  <->  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  x ) )
106105ralbidva 2721 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )  < 
x  <->  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x ) )
107106ralbidva 2721 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x ) )
10895, 107syl5bb 249 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x ) )
10988, 108sylibd 206 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  ->  A. k  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x ) )
110109reximdva 2818 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x ) )
111110ralimdv 2785 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  x
) )
11273, 111impbid 184 1  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706    C_ wss 3320   class class class wbr 4212   -->wf 5450   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   CCcc 8988   RRcr 8989    < clt 9120    - cmin 9291    / cdiv 9677   2c2 10049   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   abscabs 12039
This theorem is referenced by:  ulmcau  20311  ulmcau2  20312
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041
  Copyright terms: Public domain W3C validator