MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmcaulem Unicode version

Theorem ulmcaulem 19824
Description: Lemma for ulmcau 19825 and ulmcau2 19826: show the equivalence of the four- and five-quantifier forms of the Cauchy convergence condition. Compare cau3 11886. (Contributed by Mario Carneiro, 1-Mar-2015.)
Hypotheses
Ref Expression
ulmcau.z  |-  Z  =  ( ZZ>= `  M )
ulmcau.m  |-  ( ph  ->  M  e.  ZZ )
ulmcau.s  |-  ( ph  ->  S  e.  V )
ulmcau.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
Assertion
Ref Expression
ulmcaulem  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
Distinct variable groups:    j, k, m, x, z, F    ph, j,
k, m, x, z    S, j, k, m, x, z    j, Z, k, m, x, z    j, M, k, z
Allowed substitution hints:    M( x, m)    V( x, z, j, k, m)

Proof of Theorem ulmcaulem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 breq2 4064 . . . . . 6  |-  ( x  =  w  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  w
) )
21ralbidv 2597 . . . . 5  |-  ( x  =  w  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  w
) )
32rexralbidv 2621 . . . 4  |-  ( x  =  w  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
w ) )
43cbvralv 2798 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x  <->  A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w )
5 rphalfcl 10425 . . . . . . 7  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
6 breq2 4064 . . . . . . . . . 10  |-  ( w  =  ( x  / 
2 )  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  w  <->  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
76ralbidv 2597 . . . . . . . . 9  |-  ( w  =  ( x  / 
2 )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  <->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
87rexralbidv 2621 . . . . . . . 8  |-  ( w  =  ( x  / 
2 )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
w  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) ) )
98rspcv 2914 . . . . . . 7  |-  ( ( x  /  2 )  e.  RR+  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
105, 9syl 15 . . . . . 6  |-  ( x  e.  RR+  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
1110adantl 452 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
12 fveq2 5563 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
1312fveq1d 5565 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( F `  k
) `  z )  =  ( ( F `
 m ) `  z ) )
1413oveq1d 5915 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) )  =  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )
1514fveq2d 5567 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  =  ( abs `  (
( ( F `  m ) `  z
)  -  ( ( F `  j ) `
 z ) ) ) )
1615breq1d 4070 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  <->  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
1716ralbidv 2597 . . . . . . . . 9  |-  ( k  =  m  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 )  <->  A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
1817cbvralv 2798 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  <->  A. m  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )
1918biimpi 186 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )
20 uzss 10295 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
2120ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( ZZ>= `  k )  C_  ( ZZ>=
`  j ) )
22 ssralv 3271 . . . . . . . . . . . . . 14  |-  ( (
ZZ>= `  k )  C_  ( ZZ>= `  j )  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 )  ->  A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) ) )
2321, 22syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) ) )
24 r19.26 2709 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  S  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  <->  ( A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) ) )
25 ulmcau.f . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
2625adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  RR+ )  ->  F : Z
--> ( CC  ^m  S
) )
2726ad3antrrr 710 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  F : Z
--> ( CC  ^m  S
) )
28 ulmcau.z . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  Z  =  ( ZZ>= `  M )
2928uztrn2 10292 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
3029adantll 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  k  e.  Z
)
3128uztrn2 10292 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( k  e.  Z  /\  m  e.  ( ZZ>= `  k ) )  ->  m  e.  Z )
3230, 31sylan 457 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  m  e.  Z )
33 ffvelrn 5701 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F : Z --> ( CC 
^m  S )  /\  m  e.  Z )  ->  ( F `  m
)  e.  ( CC 
^m  S ) )
3427, 32, 33syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  m )  e.  ( CC  ^m  S ) )
35 elmapi 6835 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  m )  e.  ( CC  ^m  S )  ->  ( F `  m ) : S --> CC )
3634, 35syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  m ) : S --> CC )
37 ffvelrn 5701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F `  m
) : S --> CC  /\  z  e.  S )  ->  ( ( F `  m ) `  z
)  e.  CC )
3836, 37sylan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( F `  m
) `  z )  e.  CC )
39 ffvelrn 5701 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( F : Z --> ( CC 
^m  S )  /\  j  e.  Z )  ->  ( F `  j
)  e.  ( CC 
^m  S ) )
4026, 39sylan 457 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( F `  j )  e.  ( CC  ^m  S
) )
4140ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  j )  e.  ( CC  ^m  S ) )
42 elmapi 6835 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  j )  e.  ( CC  ^m  S )  ->  ( F `  j ) : S --> CC )
4341, 42syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  j ) : S --> CC )
44 ffvelrn 5701 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F `  j
) : S --> CC  /\  z  e.  S )  ->  ( ( F `  j ) `  z
)  e.  CC )
4543, 44sylan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( F `  j
) `  z )  e.  CC )
4638, 45abssubd 11982 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  =  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) ) )
4746breq1d 4070 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( abs `  (
( ( F `  m ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  <->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  (
x  /  2 ) ) )
4847biimpd 198 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( abs `  (
( ( F `  m ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  -> 
( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  ( x  /  2 ) ) )
49 ffvelrn 5701 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F : Z --> ( CC 
^m  S )  /\  k  e.  Z )  ->  ( F `  k
)  e.  ( CC 
^m  S ) )
5026, 29, 49syl2an 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( F `  k )  e.  ( CC  ^m  S ) )
5150anassrs 629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( F `  k )  e.  ( CC  ^m  S ) )
5251adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  k )  e.  ( CC  ^m  S ) )
53 elmapi 6835 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
5452, 53syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( F `  k ) : S --> CC )
55 ffvelrn 5701 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F `  k
) : S --> CC  /\  z  e.  S )  ->  ( ( F `  k ) `  z
)  e.  CC )
5654, 55sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( F `  k
) `  z )  e.  CC )
57 rpre 10407 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  RR+  ->  x  e.  RR )
5857ad2antlr 707 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  x  e.  RR )
5958ad3antrrr 710 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  x  e.  RR )
60 abs3lem 11869 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( F `
 k ) `  z )  e.  CC  /\  ( ( F `  m ) `  z
)  e.  CC )  /\  ( ( ( F `  j ) `
 z )  e.  CC  /\  x  e.  RR ) )  -> 
( ( ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  /\  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x ) )
6156, 38, 45, 59, 60syl22anc 1183 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  j
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x ) )
6248, 61sylan2d 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  z  e.  S )  ->  (
( ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x ) )
6362ralimdva 2655 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( A. z  e.  S  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  ->  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
6424, 63syl5bir 209 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  ->  ( ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 )  /\  A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )  ->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
6564expdimp 426 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  m  e.  ( ZZ>= `  k )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
6665an32s 779 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  /\  m  e.  ( ZZ>= `  k )
)  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
6766ralimdva 2655 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
6823, 67syld 40 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 ) )  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. m  e.  (
ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
6968impancom 427 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  k  e.  ( ZZ>= `  j )
)  /\  A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  -> 
( A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  ->  A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
7069an32s 779 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z
)  /\  A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  ( x  / 
2 ) )  /\  k  e.  ( ZZ>= `  j ) )  -> 
( A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  ( x  /  2 )  ->  A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
7170ralimdva 2655 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
) )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
7271ex 423 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  m ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  ( A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) ) )
7372com23 72 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 m ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  A. k  e.  (
ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) ) )
7419, 73mpdi 38 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
( x  /  2
)  ->  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
7574reximdva 2689 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  (
x  /  2 )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
7611, 75syld 40 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  w  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
7776ralrimdva 2667 . . 3  |-  ( ph  ->  ( A. w  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
w  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
784, 77syl5bi 208 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
79 eluzelz 10285 . . . . . . . . 9  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
8079, 28eleq2s 2408 . . . . . . . 8  |-  ( j  e.  Z  ->  j  e.  ZZ )
81 uzid 10289 . . . . . . . 8  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
8280, 81syl 15 . . . . . . 7  |-  ( j  e.  Z  ->  j  e.  ( ZZ>= `  j )
)
8382adantl 452 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  j  e.  ( ZZ>= `  j )
)
84 fveq2 5563 . . . . . . . 8  |-  ( k  =  j  ->  ( ZZ>=
`  k )  =  ( ZZ>= `  j )
)
85 fveq2 5563 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
8685fveq1d 5565 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( F `  k
) `  z )  =  ( ( F `
 j ) `  z ) )
8786oveq1d 5915 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) )  =  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )
8887fveq2d 5567 . . . . . . . . . 10  |-  ( k  =  j  ->  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  =  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) ) )
8988breq1d 4070 . . . . . . . . 9  |-  ( k  =  j  ->  (
( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
9089ralbidv 2597 . . . . . . . 8  |-  ( k  =  j  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  x
) )
9184, 90raleqbidv 2782 . . . . . . 7  |-  ( k  =  j  ->  ( A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x  <->  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
9291rspcv 2914 . . . . . 6  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x  ->  A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  j
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
9383, 92syl 15 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  ->  A. m  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x ) )
94 fveq2 5563 . . . . . . . . . . . 12  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
9594fveq1d 5565 . . . . . . . . . . 11  |-  ( m  =  k  ->  (
( F `  m
) `  z )  =  ( ( F `
 k ) `  z ) )
9695oveq2d 5916 . . . . . . . . . 10  |-  ( m  =  k  ->  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) )  =  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )
9796fveq2d 5567 . . . . . . . . 9  |-  ( m  =  k  ->  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  =  ( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  k ) `
 z ) ) ) )
9897breq1d 4070 . . . . . . . 8  |-  ( m  =  k  ->  (
( abs `  (
( ( F `  j ) `  z
)  -  ( ( F `  m ) `
 z ) ) )  <  x  <->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  <  x
) )
9998ralbidv 2597 . . . . . . 7  |-  ( m  =  k  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  j
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x  <->  A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  <  x
) )
10099cbvralv 2798 . . . . . 6  |-  ( A. m  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  <->  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  <  x
)
10125, 39sylan 457 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  e.  ( CC  ^m  S
) )
102101adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  j )  e.  ( CC  ^m  S ) )
103102, 42syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  j ) : S --> CC )
104103, 44sylan 457 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( ( F `  j ) `  z )  e.  CC )
10525, 29, 49syl2an 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  e.  ( CC  ^m  S
) )
106105anassrs 629 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k )  e.  ( CC  ^m  S ) )
107106, 53syl 15 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( F `  k ) : S --> CC )
108107, 55sylan 457 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( ( F `  k ) `  z )  e.  CC )
109104, 108abssubd 11982 . . . . . . . . 9  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( abs `  ( ( ( F `
 j ) `  z )  -  (
( F `  k
) `  z )
) )  =  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) ) )
110109breq1d 4070 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  /\  z  e.  S
)  ->  ( ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )  < 
x  <->  ( abs `  (
( ( F `  k ) `  z
)  -  ( ( F `  j ) `
 z ) ) )  <  x ) )
111110ralbidva 2593 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )  < 
x  <->  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x ) )
112111ralbidva 2593 . . . . . 6  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  k ) `  z
) ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x ) )
113100, 112syl5bb 248 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. m  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  j ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x  <->  A. k  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x ) )
11493, 113sylibd 205 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  ->  A. k  e.  (
ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x ) )
115114reximdva 2689 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>=
`  k ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  m ) `  z
) ) )  < 
x  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 j ) `  z ) ) )  <  x ) )
116115ralimdv 2656 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  m
) `  z )
) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  (
( F `  j
) `  z )
) )  <  x
) )
11778, 116impbid 183 1  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( ( F `  j ) `  z
) ) )  < 
x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. m  e.  ( ZZ>= `  k ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( ( F `
 m ) `  z ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701   A.wral 2577   E.wrex 2578    C_ wss 3186   class class class wbr 4060   -->wf 5288   ` cfv 5292  (class class class)co 5900    ^m cmap 6815   CCcc 8780   RRcr 8781    < clt 8912    - cmin 9082    / cdiv 9468   2c2 9840   ZZcz 10071   ZZ>=cuz 10277   RR+crp 10401   abscabs 11766
This theorem is referenced by:  ulmcau  19825  ulmcau2  19826
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-sup 7239  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-n0 10013  df-z 10072  df-uz 10278  df-rp 10402  df-seq 11094  df-exp 11152  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768
  Copyright terms: Public domain W3C validator