MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmdv Unicode version

Theorem ulmdv 19780
Description: If  F is a sequence of differentiable functions on  X which converge pointwise to  G, and the derivatives of 
F ( n ) converge uniformly to  H, then  G is differentiable with derivative  H. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmdv.z  |-  Z  =  ( ZZ>= `  M )
ulmdv.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
ulmdv.m  |-  ( ph  ->  M  e.  ZZ )
ulmdv.f  |-  ( ph  ->  F : Z --> ( CC 
^m  X ) )
ulmdv.g  |-  ( ph  ->  G : X --> CC )
ulmdv.l  |-  ( (
ph  /\  z  e.  X )  ->  (
k  e.  Z  |->  ( ( F `  k
) `  z )
)  ~~>  ( G `  z ) )
ulmdv.u  |-  ( ph  ->  ( k  e.  Z  |->  ( S  _D  ( F `  k )
) ) ( ~~> u `  X ) H )
Assertion
Ref Expression
ulmdv  |-  ( ph  ->  ( S  _D  G
)  =  H )
Distinct variable groups:    z, k, F    z, G    z, H    k, M    ph, k, z    S, k, z    k, X, z   
k, Z, z
Allowed substitution hints:    G( k)    H( k)    M( z)

Proof of Theorem ulmdv
StepHypRef Expression
1 ulmdv.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 dvfg 19256 . . . . 5  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  G ) : dom  ( S  _D  G
) --> CC )
31, 2syl 15 . . . 4  |-  ( ph  ->  ( S  _D  G
) : dom  ( S  _D  G ) --> CC )
4 recnprss 19254 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
51, 4syl 15 . . . . . . 7  |-  ( ph  ->  S  C_  CC )
6 ulmdv.g . . . . . . 7  |-  ( ph  ->  G : X --> CC )
7 ulmdv.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
8 uzid 10242 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
97, 8syl 15 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
10 ulmdv.z . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
119, 10syl6eleqr 2374 . . . . . . . 8  |-  ( ph  ->  M  e.  Z )
12 ulmdv.f . . . . . . . . . . 11  |-  ( ph  ->  F : Z --> ( CC 
^m  X ) )
13 ulmdv.l . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  X )  ->  (
k  e.  Z  |->  ( ( F `  k
) `  z )
)  ~~>  ( G `  z ) )
14 ulmdv.u . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  Z  |->  ( S  _D  ( F `  k )
) ) ( ~~> u `  X ) H )
1510, 1, 7, 12, 6, 13, 14ulmdvlem2 19778 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  dom  ( S  _D  ( F `  k )
)  =  X )
16 dvbsss 19252 . . . . . . . . . . 11  |-  dom  ( S  _D  ( F `  k ) )  C_  S
1716a1i 10 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  dom  ( S  _D  ( F `  k )
)  C_  S )
1815, 17eqsstr3d 3213 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  X  C_  S )
1918ralrimiva 2626 . . . . . . . 8  |-  ( ph  ->  A. k  e.  Z  X  C_  S )
20 biidd 228 . . . . . . . . 9  |-  ( k  =  M  ->  ( X  C_  S  <->  X  C_  S
) )
2120rspcv 2880 . . . . . . . 8  |-  ( M  e.  Z  ->  ( A. k  e.  Z  X  C_  S  ->  X  C_  S ) )
2211, 19, 21sylc 56 . . . . . . 7  |-  ( ph  ->  X  C_  S )
235, 6, 22dvbss 19251 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  G )  C_  X
)
2410, 1, 7, 12, 6, 13, 14ulmdvlem3 19779 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  X )  ->  z
( S  _D  G
) ( H `  z ) )
25 vex 2791 . . . . . . . . . 10  |-  z  e. 
_V
26 fvex 5539 . . . . . . . . . 10  |-  ( H `
 z )  e. 
_V
2725, 26breldm 4883 . . . . . . . . 9  |-  ( z ( S  _D  G
) ( H `  z )  ->  z  e.  dom  ( S  _D  G ) )
2824, 27syl 15 . . . . . . . 8  |-  ( (
ph  /\  z  e.  X )  ->  z  e.  dom  ( S  _D  G ) )
2928ex 423 . . . . . . 7  |-  ( ph  ->  ( z  e.  X  ->  z  e.  dom  ( S  _D  G ) ) )
3029ssrdv 3185 . . . . . 6  |-  ( ph  ->  X  C_  dom  ( S  _D  G ) )
3123, 30eqssd 3196 . . . . 5  |-  ( ph  ->  dom  ( S  _D  G )  =  X )
3231feq2d 5380 . . . 4  |-  ( ph  ->  ( ( S  _D  G ) : dom  ( S  _D  G
) --> CC  <->  ( S  _D  G ) : X --> CC ) )
333, 32mpbid 201 . . 3  |-  ( ph  ->  ( S  _D  G
) : X --> CC )
34 ffn 5389 . . 3  |-  ( ( S  _D  G ) : X --> CC  ->  ( S  _D  G )  Fn  X )
3533, 34syl 15 . 2  |-  ( ph  ->  ( S  _D  G
)  Fn  X )
36 ulmcl 19760 . . . 4  |-  ( ( k  e.  Z  |->  ( S  _D  ( F `
 k ) ) ) ( ~~> u `  X ) H  ->  H : X --> CC )
3714, 36syl 15 . . 3  |-  ( ph  ->  H : X --> CC )
38 ffn 5389 . . 3  |-  ( H : X --> CC  ->  H  Fn  X )
3937, 38syl 15 . 2  |-  ( ph  ->  H  Fn  X )
40 ffun 5391 . . . . 5  |-  ( ( S  _D  G ) : dom  ( S  _D  G ) --> CC 
->  Fun  ( S  _D  G ) )
413, 40syl 15 . . . 4  |-  ( ph  ->  Fun  ( S  _D  G ) )
4241adantr 451 . . 3  |-  ( (
ph  /\  z  e.  X )  ->  Fun  ( S  _D  G
) )
43 funbrfv 5561 . . 3  |-  ( Fun  ( S  _D  G
)  ->  ( z
( S  _D  G
) ( H `  z )  ->  (
( S  _D  G
) `  z )  =  ( H `  z ) ) )
4442, 24, 43sylc 56 . 2  |-  ( (
ph  /\  z  e.  X )  ->  (
( S  _D  G
) `  z )  =  ( H `  z ) )
4535, 39, 44eqfnfvd 5625 1  |-  ( ph  ->  ( S  _D  G
)  =  H )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   {cpr 3641   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   Fun wfun 5249    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   CCcc 8735   RRcr 8736   ZZcz 10024   ZZ>=cuz 10230    ~~> cli 11958    _D cdv 19213   ~~> uculm 19755
This theorem is referenced by:  pserdvlem2  19804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-ulm 19756
  Copyright terms: Public domain W3C validator