MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmrel Structured version   Unicode version

Theorem ulmrel 20325
Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmrel  |-  Rel  ( ~~> u `  S )

Proof of Theorem ulmrel
Dummy variables  f 
j  k  n  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ulm 20324 . 2  |-  ~~> u  =  ( s  e.  _V  |->  { <. f ,  y
>.  |  E. n  e.  ZZ  ( f : ( ZZ>= `  n ) --> ( CC  ^m  s
)  /\  y :
s --> CC  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) A. z  e.  s  ( abs `  ( ( ( f `  k ) `
 z )  -  ( y `  z
) ) )  < 
x ) } )
21relmptopab 6321 1  |-  Rel  ( ~~> u `  S )
Colors of variables: wff set class
Syntax hints:    /\ w3a 937   A.wral 2711   E.wrex 2712   _Vcvv 2962   class class class wbr 4237   Rel wrel 4912   -->wf 5479   ` cfv 5483  (class class class)co 6110    ^m cmap 7047   CCcc 9019    < clt 9151    - cmin 9322   ZZcz 10313   ZZ>=cuz 10519   RR+crp 10643   abscabs 12070   ~~> uculm 20323
This theorem is referenced by:  ulmval  20327  ulmdm  20340  ulmcau  20342  ulmdvlem3  20349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fv 5491  df-ulm 20324
  Copyright terms: Public domain W3C validator