Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmrel Structured version   Unicode version

Theorem ulmrel 20325
 Description: The uniform limit relation is a relation. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
ulmrel

Proof of Theorem ulmrel
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ulm 20324 . 2
21relmptopab 6321 1
 Colors of variables: wff set class Syntax hints:   w3a 937  wral 2711  wrex 2712  cvv 2962   class class class wbr 4237   wrel 4912  wf 5479  cfv 5483  (class class class)co 6110   cmap 7047  cc 9019   clt 9151   cmin 9322  cz 10313  cuz 10519  crp 10643  cabs 12070  culm 20323 This theorem is referenced by:  ulmval  20327  ulmdm  20340  ulmcau  20342  ulmdvlem3  20349 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fv 5491  df-ulm 20324
 Copyright terms: Public domain W3C validator