MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmss Unicode version

Theorem ulmss 19790
Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmss.z  |-  Z  =  ( ZZ>= `  M )
ulmss.t  |-  ( ph  ->  T  C_  S )
ulmss.a  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  W )
ulmss.u  |-  ( ph  ->  ( x  e.  Z  |->  A ) ( ~~> u `  S ) G )
Assertion
Ref Expression
ulmss  |-  ( ph  ->  ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T ) )
Distinct variable groups:    x, T    ph, x    x, S    x, Z
Allowed substitution hints:    A( x)    G( x)    M( x)    W( x)

Proof of Theorem ulmss
Dummy variables  j 
k  m  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmss.u . 2  |-  ( ph  ->  ( x  e.  Z  |->  A ) ( ~~> u `  S ) G )
2 ulmss.z . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
32uztrn2 10261 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
4 ulmss.t . . . . . . . . . . 11  |-  ( ph  ->  T  C_  S )
54adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  T  C_  S )
6 ssralv 3250 . . . . . . . . . 10  |-  ( T 
C_  S  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
75, 6syl 15 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
8 fvres 5558 . . . . . . . . . . . . . . 15  |-  ( z  e.  T  ->  (
( A  |`  T ) `
 z )  =  ( A `  z
) )
98ad2antll 709 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( A  |`  T ) `  z
)  =  ( A `
 z ) )
10 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  ->  x  e.  Z )
11 ulmss.a . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  W )
1211adantrr 697 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  ->  A  e.  W )
13 resexg 5010 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  W  ->  ( A  |`  T )  e. 
_V )
1412, 13syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( A  |`  T )  e.  _V )
15 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Z  |->  ( A  |`  T ) )  =  ( x  e.  Z  |->  ( A  |`  T ) )
1615fvmpt2 5624 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  Z  /\  ( A  |`  T )  e.  _V )  -> 
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x )  =  ( A  |`  T )
)
1710, 14, 16syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x )  =  ( A  |`  T )
)
1817fveq1d 5543 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( A  |`  T ) `  z ) )
19 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Z  |->  A )  =  ( x  e.  Z  |->  A )
2019fvmpt2 5624 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  Z  /\  A  e.  W )  ->  ( ( x  e.  Z  |->  A ) `  x )  =  A )
2110, 12, 20syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( x  e.  Z  |->  A ) `  x )  =  A )
2221fveq1d 5543 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  A ) `
 x ) `  z )  =  ( A `  z ) )
239, 18, 223eqtr4d 2338 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )
)
2423ralrimivva 2648 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  Z  A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )
)
25 nfv 1609 . . . . . . . . . . . . 13  |-  F/ k A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )
26 nfcv 2432 . . . . . . . . . . . . . 14  |-  F/_ x T
27 nfmpt1 4125 . . . . . . . . . . . . . . . . 17  |-  F/_ x
( x  e.  Z  |->  ( A  |`  T ) )
28 nfcv 2432 . . . . . . . . . . . . . . . . 17  |-  F/_ x
k
2927, 28nffv 5548 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( x  e.  Z  |->  ( A  |`  T ) ) `  k )
30 nfcv 2432 . . . . . . . . . . . . . . . 16  |-  F/_ x
z
3129, 30nffv 5548 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)
32 nfmpt1 4125 . . . . . . . . . . . . . . . . 17  |-  F/_ x
( x  e.  Z  |->  A )
3332, 28nffv 5548 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( x  e.  Z  |->  A ) `  k )
3433, 30nffv 5548 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( ( x  e.  Z  |->  A ) `
 k ) `  z )
3531, 34nfeq 2439 . . . . . . . . . . . . . 14  |-  F/ x
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
3626, 35nfral 2609 . . . . . . . . . . . . 13  |-  F/ x A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
37 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
( x  e.  Z  |->  ( A  |`  T ) ) `  x )  =  ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) )
3837fveq1d 5543 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z ) )
39 fveq2 5541 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
( x  e.  Z  |->  A ) `  x
)  =  ( ( x  e.  Z  |->  A ) `  k ) )
4039fveq1d 5543 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
( ( x  e.  Z  |->  A ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
)
4138, 40eqeq12d 2310 . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )  <->  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
) )
4241ralbidv 2576 . . . . . . . . . . . . 13  |-  ( x  =  k  ->  ( A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )  <->  A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
) )
4325, 36, 42cbvral 2773 . . . . . . . . . . . 12  |-  ( A. x  e.  Z  A. z  e.  T  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )  <->  A. k  e.  Z  A. z  e.  T  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
)
4424, 43sylib 188 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  Z  A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
)
4544r19.21bi 2654 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  A. z  e.  T  ( (
( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z )  =  ( ( ( x  e.  Z  |->  A ) `
 k ) `  z ) )
46 oveq1 5881 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  ( ( ( ( x  e.  Z  |->  ( A  |`  T )
) `  k ) `  z )  -  ( G `  z )
)  =  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )
4746fveq2d 5545 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  ( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  =  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) ) )
4847breq1d 4049 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  ( ( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
4948ralimi 2631 . . . . . . . . . 10  |-  ( A. z  e.  T  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  A. z  e.  T  ( ( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
50 ralbi 2692 . . . . . . . . . 10  |-  ( A. z  e.  T  (
( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
)  ->  ( A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r  <->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
5145, 49, 503syl 18 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
527, 51sylibrd 225 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
533, 52sylan2 460 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
5453anassrs 629 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  -  ( G `  z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T )
) `  k ) `  z )  -  ( G `  z )
) )  <  r
) )
5554ralimdva 2634 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  -  ( G `  z ) ) )  <  r  ->  A. k  e.  ( ZZ>= `  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
5655reximdva 2668 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
5756ralimdv 2635 . . 3  |-  ( ph  ->  ( A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  -  ( G `  z ) ) )  <  r  ->  A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
58 ulmf 19777 . . . . . 6  |-  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  E. m  e.  ZZ  ( x  e.  Z  |->  A ) : (
ZZ>= `  m ) --> ( CC  ^m  S ) )
591, 58syl 15 . . . . 5  |-  ( ph  ->  E. m  e.  ZZ  ( x  e.  Z  |->  A ) : (
ZZ>= `  m ) --> ( CC  ^m  S ) )
60 fdm 5409 . . . . . . . 8  |-  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  dom  ( x  e.  Z  |->  A )  =  (
ZZ>= `  m ) )
6119dmmptss 5185 . . . . . . . . 9  |-  dom  (
x  e.  Z  |->  A )  C_  Z
6261a1i 10 . . . . . . . 8  |-  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  dom  ( x  e.  Z  |->  A )  C_  Z
)
6360, 62eqsstr3d 3226 . . . . . . 7  |-  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  -> 
( ZZ>= `  m )  C_  Z )
64 uzid 10258 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
6564adantl 452 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ZZ )  ->  m  e.  ( ZZ>= `  m )
)
66 ssel 3187 . . . . . . . . 9  |-  ( (
ZZ>= `  m )  C_  Z  ->  ( m  e.  ( ZZ>= `  m )  ->  m  e.  Z ) )
67 eluzel2 10251 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
6867, 2eleq2s 2388 . . . . . . . . 9  |-  ( m  e.  Z  ->  M  e.  ZZ )
6966, 68syl6 29 . . . . . . . 8  |-  ( (
ZZ>= `  m )  C_  Z  ->  ( m  e.  ( ZZ>= `  m )  ->  M  e.  ZZ ) )
7065, 69syl5com 26 . . . . . . 7  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( (
ZZ>= `  m )  C_  Z  ->  M  e.  ZZ ) )
7163, 70syl5 28 . . . . . 6  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  M  e.  ZZ )
)
7271rexlimdva 2680 . . . . 5  |-  ( ph  ->  ( E. m  e.  ZZ  ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC  ^m  S )  ->  M  e.  ZZ ) )
7359, 72mpd 14 . . . 4  |-  ( ph  ->  M  e.  ZZ )
7411ralrimiva 2639 . . . . . 6  |-  ( ph  ->  A. x  e.  Z  A  e.  W )
7519fnmpt 5386 . . . . . 6  |-  ( A. x  e.  Z  A  e.  W  ->  ( x  e.  Z  |->  A )  Fn  Z )
7674, 75syl 15 . . . . 5  |-  ( ph  ->  ( x  e.  Z  |->  A )  Fn  Z
)
77 frn 5411 . . . . . . 7  |-  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) )
7877rexlimivw 2676 . . . . . 6  |-  ( E. m  e.  ZZ  (
x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) )
7959, 78syl 15 . . . . 5  |-  ( ph  ->  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) )
80 df-f 5275 . . . . 5  |-  ( ( x  e.  Z  |->  A ) : Z --> ( CC 
^m  S )  <->  ( (
x  e.  Z  |->  A )  Fn  Z  /\  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) ) )
8176, 79, 80sylanbrc 645 . . . 4  |-  ( ph  ->  ( x  e.  Z  |->  A ) : Z --> ( CC  ^m  S ) )
82 eqidd 2297 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( ( ( x  e.  Z  |->  A ) `
 k ) `  z )  =  ( ( ( x  e.  Z  |->  A ) `  k ) `  z
) )
83 eqidd 2297 . . . 4  |-  ( (
ph  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
84 ulmcl 19776 . . . . 5  |-  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  G : S --> CC )
851, 84syl 15 . . . 4  |-  ( ph  ->  G : S --> CC )
86 ulmscl 19774 . . . . 5  |-  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  S  e.  _V )
871, 86syl 15 . . . 4  |-  ( ph  ->  S  e.  _V )
882, 73, 81, 82, 83, 85, 87ulm2 19780 . . 3  |-  ( ph  ->  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  <->  A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
8919fmpt 5697 . . . . . . . . . 10  |-  ( A. x  e.  Z  A  e.  ( CC  ^m  S
)  <->  ( x  e.  Z  |->  A ) : Z --> ( CC  ^m  S ) )
9081, 89sylibr 203 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  Z  A  e.  ( CC  ^m  S ) )
9190r19.21bi 2654 . . . . . . . 8  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  ( CC  ^m  S
) )
92 elmapi 6808 . . . . . . . 8  |-  ( A  e.  ( CC  ^m  S )  ->  A : S --> CC )
9391, 92syl 15 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  A : S --> CC )
944adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  T  C_  S )
95 fssres 5424 . . . . . . 7  |-  ( ( A : S --> CC  /\  T  C_  S )  -> 
( A  |`  T ) : T --> CC )
9693, 94, 95syl2anc 642 . . . . . 6  |-  ( (
ph  /\  x  e.  Z )  ->  ( A  |`  T ) : T --> CC )
97 cnex 8834 . . . . . . 7  |-  CC  e.  _V
98 ssexg 4176 . . . . . . . . 9  |-  ( ( T  C_  S  /\  S  e.  _V )  ->  T  e.  _V )
994, 87, 98syl2anc 642 . . . . . . . 8  |-  ( ph  ->  T  e.  _V )
10099adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  T  e.  _V )
101 elmapg 6801 . . . . . . 7  |-  ( ( CC  e.  _V  /\  T  e.  _V )  ->  ( ( A  |`  T )  e.  ( CC  ^m  T )  <-> 
( A  |`  T ) : T --> CC ) )
10297, 100, 101sylancr 644 . . . . . 6  |-  ( (
ph  /\  x  e.  Z )  ->  (
( A  |`  T )  e.  ( CC  ^m  T )  <->  ( A  |`  T ) : T --> CC ) )
10396, 102mpbird 223 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  ( A  |`  T )  e.  ( CC  ^m  T
) )
104103, 15fmptd 5700 . . . 4  |-  ( ph  ->  ( x  e.  Z  |->  ( A  |`  T ) ) : Z --> ( CC 
^m  T ) )
105 eqidd 2297 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z ) )
106 fvres 5558 . . . . 5  |-  ( z  e.  T  ->  (
( G  |`  T ) `
 z )  =  ( G `  z
) )
107106adantl 452 . . . 4  |-  ( (
ph  /\  z  e.  T )  ->  (
( G  |`  T ) `
 z )  =  ( G `  z
) )
108 fssres 5424 . . . . 5  |-  ( ( G : S --> CC  /\  T  C_  S )  -> 
( G  |`  T ) : T --> CC )
10985, 4, 108syl2anc 642 . . . 4  |-  ( ph  ->  ( G  |`  T ) : T --> CC )
1102, 73, 104, 105, 107, 109, 99ulm2 19780 . . 3  |-  ( ph  ->  ( ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T )  <->  A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
11157, 88, 1103imtr4d 259 . 2  |-  ( ph  ->  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T ) ) )
1121, 111mpd 14 1  |-  ( ph  ->  ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   ran crn 4706    |` cres 4707    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   CCcc 8751    < clt 8883    - cmin 9053   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   abscabs 11735   ~~> uculm 19771
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-pre-lttri 8827  ax-pre-lttrn 8828
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-neg 9056  df-z 10041  df-uz 10247  df-ulm 19772
  Copyright terms: Public domain W3C validator