Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgraex Unicode version

Theorem umgraex 24279
Description: An edge is an unordered pair of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgraex  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Distinct variable groups:    x, y, A    x, E, y    x, F, y    x, V, y

Proof of Theorem umgraex
StepHypRef Expression
1 umgran0 24276 . . . 4  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  =/=  (/) )
2 n0 3540 . . . 4  |-  ( ( E `  F )  =/=  (/)  <->  E. x  x  e.  ( E `  F
) )
31, 2sylib 188 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  x  e.  ( E `  F ) )
4 umgrass 24275 . . . . . . 7  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
54sselda 3256 . . . . . 6  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  x  e.  V )
65adantr 451 . . . . . . . 8  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  x  e.  V )
7 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( ( E `  F )  \  {
x } )  =  (/) )
8 ssdif0 3589 . . . . . . . . . 10  |-  ( ( E `  F ) 
C_  { x }  <->  ( ( E `  F
)  \  { x } )  =  (/) )
97, 8sylibr 203 . . . . . . . . 9  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( E `  F
)  C_  { x } )
10 simpr 447 . . . . . . . . . . 11  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  x  e.  ( E `  F ) )
1110snssd 3839 . . . . . . . . . 10  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  { x }  C_  ( E `  F ) )
1211adantr 451 . . . . . . . . 9  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  { x }  C_  ( E `  F ) )
139, 12eqssd 3272 . . . . . . . 8  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  -> 
( E `  F
)  =  { x } )
14 preq2 3783 . . . . . . . . . . 11  |-  ( y  =  x  ->  { x ,  y }  =  { x ,  x } )
15 dfsn2 3730 . . . . . . . . . . 11  |-  { x }  =  { x ,  x }
1614, 15syl6eqr 2408 . . . . . . . . . 10  |-  ( y  =  x  ->  { x ,  y }  =  { x } )
1716eqeq2d 2369 . . . . . . . . 9  |-  ( y  =  x  ->  (
( E `  F
)  =  { x ,  y }  <->  ( E `  F )  =  {
x } ) )
1817rspcev 2960 . . . . . . . 8  |-  ( ( x  e.  V  /\  ( E `  F )  =  { x }
)  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
196, 13, 18syl2anc 642 . . . . . . 7  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =  (/) )  ->  E. y  e.  V  ( E `  F )  =  { x ,  y } )
20 n0 3540 . . . . . . . 8  |-  ( ( ( E `  F
)  \  { x } )  =/=  (/)  <->  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )
214adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  C_  V
)
22 difss 3379 . . . . . . . . . . . . . . 15  |-  ( ( E `  F ) 
\  { x }
)  C_  ( E `  F )
23 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  e.  ( ( E `  F
)  \  { x } ) )
2422, 23sseldi 3254 . . . . . . . . . . . . . 14  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  e.  ( E `  F ) )
2521, 24sseldd 3257 . . . . . . . . . . . . 13  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  e.  V
)
26 umgrafi 24278 . . . . . . . . . . . . . . . 16  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  Fin )
2726adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  e.  Fin )
28 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  x  e.  ( E `  F ) )
29 prssi 3850 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( E `
 F )  /\  y  e.  ( E `  F ) )  ->  { x ,  y }  C_  ( E `  F ) )
3028, 24, 29syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  C_  ( E `  F )
)
31 fvex 5619 . . . . . . . . . . . . . . . . 17  |-  ( E `
 F )  e. 
_V
32 ssdomg 6992 . . . . . . . . . . . . . . . . 17  |-  ( ( E `  F )  e.  _V  ->  ( { x ,  y }  C_  ( E `  F )  ->  { x ,  y }  ~<_  ( E `
 F ) ) )
3331, 30, 32mpsyl 59 . . . . . . . . . . . . . . . 16  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  ~<_  ( E `
 F ) )
34 umgrale 24277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( # `  ( E `  F )
)  <_  2 )
3534adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( # `  ( E `  F )
)  <_  2 )
36 eldifsni 3826 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( ( E `
 F )  \  { x } )  ->  y  =/=  x
)
3736ad2antll 709 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  y  =/=  x
)
3837necomd 2604 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  x  =/=  y
)
39 vex 2867 . . . . . . . . . . . . . . . . . . . 20  |-  x  e. 
_V
40 vex 2867 . . . . . . . . . . . . . . . . . . . 20  |-  y  e. 
_V
41 hashprg 11458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  _V  /\  y  e.  _V )  ->  ( x  =/=  y  <->  (
# `  { x ,  y } )  =  2 ) )
4239, 40, 41mp2an 653 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =/=  y  <->  ( # `  {
x ,  y } )  =  2 )
4338, 42sylib 188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( # `  {
x ,  y } )  =  2 )
4435, 43breqtrrd 4128 . . . . . . . . . . . . . . . . 17  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( # `  ( E `  F )
)  <_  ( # `  {
x ,  y } ) )
45 prfi 7218 . . . . . . . . . . . . . . . . . 18  |-  { x ,  y }  e.  Fin
46 hashdom 11451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( E `  F
)  e.  Fin  /\  { x ,  y }  e.  Fin )  -> 
( ( # `  ( E `  F )
)  <_  ( # `  {
x ,  y } )  <->  ( E `  F )  ~<_  { x ,  y } ) )
4727, 45, 46sylancl 643 . . . . . . . . . . . . . . . . 17  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( ( # `  ( E `  F
) )  <_  ( # `
 { x ,  y } )  <->  ( E `  F )  ~<_  { x ,  y } ) )
4844, 47mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  ~<_  { x ,  y } )
49 sbth 7066 . . . . . . . . . . . . . . . 16  |-  ( ( { x ,  y }  ~<_  ( E `  F )  /\  ( E `  F )  ~<_  { x ,  y } )  ->  { x ,  y }  ~~  ( E `  F ) )
5033, 48, 49syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  ~~  ( E `  F )
)
51 fisseneq 7159 . . . . . . . . . . . . . . 15  |-  ( ( ( E `  F
)  e.  Fin  /\  { x ,  y } 
C_  ( E `  F )  /\  {
x ,  y } 
~~  ( E `  F ) )  ->  { x ,  y }  =  ( E `
 F ) )
5227, 30, 50, 51syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  { x ,  y }  =  ( E `  F ) )
5352eqcomd 2363 . . . . . . . . . . . . 13  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( E `  F )  =  {
x ,  y } )
5425, 53jca 518 . . . . . . . . . . . 12  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  ( x  e.  ( E `  F )  /\  y  e.  ( ( E `  F
)  \  { x } ) ) )  ->  ( y  e.  V  /\  ( E `
 F )  =  { x ,  y } ) )
5554expr 598 . . . . . . . . . . 11  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  ( y  e.  ( ( E `  F )  \  {
x } )  -> 
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) ) )
5655eximdv 1622 . . . . . . . . . 10  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  ( E. y  y  e.  (
( E `  F
)  \  { x } )  ->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) ) )
5756imp 418 . . . . . . . . 9  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )  ->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) )
58 df-rex 2625 . . . . . . . . 9  |-  ( E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. y
( y  e.  V  /\  ( E `  F
)  =  { x ,  y } ) )
5957, 58sylibr 203 . . . . . . . 8  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  E. y 
y  e.  ( ( E `  F ) 
\  { x }
) )  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
6020, 59sylan2b 461 . . . . . . 7  |-  ( ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  /\  x  e.  ( E `  F ) )  /\  ( ( E `  F ) 
\  { x }
)  =/=  (/) )  ->  E. y  e.  V  ( E `  F )  =  { x ,  y } )
6119, 60pm2.61dane 2599 . . . . . 6  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
625, 61jca 518 . . . . 5  |-  ( ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A )  /\  x  e.  ( E `  F )
)  ->  ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  {
x ,  y } ) )
6362ex 423 . . . 4  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( x  e.  ( E `  F
)  ->  ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  {
x ,  y } ) ) )
6463eximdv 1622 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E. x  x  e.  ( E `  F )  ->  E. x ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) ) )
653, 64mpd 14 . 2  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x
( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) )
66 df-rex 2625 . 2  |-  ( E. x  e.  V  E. y  e.  V  ( E `  F )  =  { x ,  y }  <->  E. x ( x  e.  V  /\  E. y  e.  V  ( E `  F )  =  { x ,  y } ) )
6765, 66sylibr 203 1  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  E. x  e.  V  E. y  e.  V  ( E `  F )  =  {
x ,  y } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1541    = wceq 1642    e. wcel 1710    =/= wne 2521   E.wrex 2620   _Vcvv 2864    \ cdif 3225    C_ wss 3228   (/)c0 3531   {csn 3716   {cpr 3717   class class class wbr 4102    Fn wfn 5329   ` cfv 5334    ~~ cen 6945    ~<_ cdom 6946   Fincfn 6948    <_ cle 8955   2c2 9882   #chash 11427   UMGrph cumg 24264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-card 7659  df-cda 7881  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-2 9891  df-n0 10055  df-z 10114  df-uz 10320  df-fz 10872  df-hash 11428  df-umgra 24267
  Copyright terms: Public domain W3C validator