MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrass Unicode version

Theorem umgrass 21315
Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgrass  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)

Proof of Theorem umgrass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3396 . . . 4  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_  ( ~P V  \  { (/) } )
2 difss 3442 . . . 4  |-  ( ~P V  \  { (/) } )  C_  ~P V
31, 2sstri 3325 . . 3  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_ 
~P V
4 umgraf 21314 . . . . 5  |-  ( ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
54ffvelrnda 5837 . . . 4  |-  ( ( ( V UMGrph  E  /\  E  Fn  A )  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
653impa 1148 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
73, 6sseldi 3314 . 2  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  ~P V )
87elpwid 3776 1  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1721   {crab 2678    \ cdif 3285    C_ wss 3288   (/)c0 3596   ~Pcpw 3767   {csn 3782   class class class wbr 4180    Fn wfn 5416   ` cfv 5421    <_ cle 9085   2c2 10013   #chash 11581   UMGrph cumg 21308
This theorem is referenced by:  umgraex  21319
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-fv 5429  df-umgra 21309
  Copyright terms: Public domain W3C validator