MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrass Structured version   Unicode version

Theorem umgrass 21359
Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015.)
Assertion
Ref Expression
umgrass  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)

Proof of Theorem umgrass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3430 . . . 4  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_  ( ~P V  \  { (/) } )
2 difss 3476 . . . 4  |-  ( ~P V  \  { (/) } )  C_  ~P V
31, 2sstri 3359 . . 3  |-  { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }  C_ 
~P V
4 umgraf 21358 . . . . 5  |-  ( ( V UMGrph  E  /\  E  Fn  A )  ->  E : A --> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
54ffvelrnda 5873 . . . 4  |-  ( ( ( V UMGrph  E  /\  E  Fn  A )  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
653impa 1149 . . 3  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  {
x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  <_  2 } )
73, 6sseldi 3348 . 2  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  e.  ~P V )
87elpwid 3810 1  |-  ( ( V UMGrph  E  /\  E  Fn  A  /\  F  e.  A
)  ->  ( E `  F )  C_  V
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    e. wcel 1726   {crab 2711    \ cdif 3319    C_ wss 3322   (/)c0 3630   ~Pcpw 3801   {csn 3816   class class class wbr 4215    Fn wfn 5452   ` cfv 5457    <_ cle 9126   2c2 10054   #chash 11623   UMGrph cumg 21352
This theorem is referenced by:  umgraex  21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-fv 5465  df-umgra 21353
  Copyright terms: Public domain W3C validator