Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  un00 Structured version   Unicode version

Theorem un00 3663
 Description: Two classes are empty iff their union is empty. (Contributed by NM, 11-Aug-2004.)
Assertion
Ref Expression
un00

Proof of Theorem un00
StepHypRef Expression
1 uneq12 3496 . . 3
2 un0 3652 . . 3
31, 2syl6eq 2484 . 2
4 ssun1 3510 . . . . 5
5 sseq2 3370 . . . . 5
64, 5mpbii 203 . . . 4
7 ss0b 3657 . . . 4
86, 7sylib 189 . . 3
9 ssun2 3511 . . . . 5
10 sseq2 3370 . . . . 5
119, 10mpbii 203 . . . 4
12 ss0b 3657 . . . 4
1311, 12sylib 189 . . 3
148, 13jca 519 . 2
153, 14impbii 181 1
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   wceq 1652   cun 3318   wss 3320  c0 3628 This theorem is referenced by:  undisj1  3679  undisj2  3680  disjpr2  3870  rankxplim3  7805  ssxr  9145  rpnnen2  12825 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629
 Copyright terms: Public domain W3C validator