MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbenlem Unicode version

Theorem unbenlem 12971
Description: Lemma for unben 12972. (Contributed by NM, 5-May-2005.) (Revised by Mario Carneiro, 15-Sep-2013.)
Hypothesis
Ref Expression
unbenlem.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )
Assertion
Ref Expression
unbenlem  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  om )
Distinct variable groups:    m, n, A    m, G, n
Allowed substitution hints:    A( x)    G( x)

Proof of Theorem unbenlem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nnex 9768 . . . . 5  |-  NN  e.  _V
21ssex 4174 . . . 4  |-  ( A 
C_  NN  ->  A  e. 
_V )
3 1z 10069 . . . . . . . 8  |-  1  e.  ZZ
4 unbenlem.1 . . . . . . . 8  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  1 )  |`  om )
53, 4om2uzf1oi 11032 . . . . . . 7  |-  G : om
-1-1-onto-> ( ZZ>= `  1 )
6 nnuz 10279 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7 f1oeq3 5481 . . . . . . . 8  |-  ( NN  =  ( ZZ>= `  1
)  ->  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
) )
86, 7ax-mp 8 . . . . . . 7  |-  ( G : om -1-1-onto-> NN  <->  G : om -1-1-onto-> ( ZZ>= `  1 )
)
95, 8mpbir 200 . . . . . 6  |-  G : om
-1-1-onto-> NN
10 f1ocnv 5501 . . . . . 6  |-  ( G : om -1-1-onto-> NN  ->  `' G : NN -1-1-onto-> om )
11 f1of1 5487 . . . . . 6  |-  ( `' G : NN -1-1-onto-> om  ->  `' G : NN -1-1-> om )
129, 10, 11mp2b 9 . . . . 5  |-  `' G : NN -1-1-> om
13 f1ores 5503 . . . . 5  |-  ( ( `' G : NN -1-1-> om  /\  A  C_  NN )  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
1412, 13mpan 651 . . . 4  |-  ( A 
C_  NN  ->  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )
15 f1oeng 6896 . . . 4  |-  ( ( A  e.  _V  /\  ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A ) )  ->  A  ~~  ( `' G " A ) )
162, 14, 15syl2anc 642 . . 3  |-  ( A 
C_  NN  ->  A  ~~  ( `' G " A ) )
1716adantr 451 . 2  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  ( `' G " A ) )
18 imassrn 5041 . . . 4  |-  ( `' G " A ) 
C_  ran  `' G
19 dfdm4 4888 . . . . 5  |-  dom  G  =  ran  `' G
20 f1of 5488 . . . . . . 7  |-  ( G : om -1-1-onto-> NN  ->  G : om
--> NN )
219, 20ax-mp 8 . . . . . 6  |-  G : om
--> NN
2221fdmi 5410 . . . . 5  |-  dom  G  =  om
2319, 22eqtr3i 2318 . . . 4  |-  ran  `' G  =  om
2418, 23sseqtri 3223 . . 3  |-  ( `' G " A ) 
C_  om
253, 4om2uzuzi 11028 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( G `  y )  e.  ( ZZ>= `  1 )
)
2625, 6syl6eleqr 2387 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( G `  y )  e.  NN )
27 breq1 4042 . . . . . . . . . . . 12  |-  ( m  =  ( G `  y )  ->  (
m  <  n  <->  ( G `  y )  <  n
) )
2827rexbidv 2577 . . . . . . . . . . 11  |-  ( m  =  ( G `  y )  ->  ( E. n  e.  A  m  <  n  <->  E. n  e.  A  ( G `  y )  <  n
) )
2928rspcv 2893 . . . . . . . . . 10  |-  ( ( G `  y )  e.  NN  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. n  e.  A  ( G `  y )  <  n
) )
3026, 29syl 15 . . . . . . . . 9  |-  ( y  e.  om  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. n  e.  A  ( G `  y )  <  n
) )
3130adantr 451 . . . . . . . 8  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. n  e.  A  ( G `  y )  <  n ) )
32 f1ocnv 5501 . . . . . . . . . . . . . . . . 17  |-  ( ( `' G  |`  A ) : A -1-1-onto-> ( `' G " A )  ->  `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A )
3314, 32syl 15 . . . . . . . . . . . . . . . 16  |-  ( A 
C_  NN  ->  `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A )
34 f1ofun 5490 . . . . . . . . . . . . . . . . . 18  |-  ( G : om -1-1-onto-> NN  ->  Fun  G )
359, 34ax-mp 8 . . . . . . . . . . . . . . . . 17  |-  Fun  G
36 funcnvres2 5339 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
G  ->  `' ( `' G  |`  A )  =  ( G  |`  ( `' G " A ) ) )
37 f1oeq1 5479 . . . . . . . . . . . . . . . . 17  |-  ( `' ( `' G  |`  A )  =  ( G  |`  ( `' G " A ) )  ->  ( `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A  <->  ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A ) )
3835, 36, 37mp2b 9 . . . . . . . . . . . . . . . 16  |-  ( `' ( `' G  |`  A ) : ( `' G " A ) -1-1-onto-> A  <-> 
( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A )
3933, 38sylib 188 . . . . . . . . . . . . . . 15  |-  ( A 
C_  NN  ->  ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A )
40 f1ofo 5495 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( G  |`  ( `' G " A ) ) : ( `' G " A ) -onto-> A )
41 forn 5470 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -onto-> A  ->  ran  ( G  |`  ( `' G " A ) )  =  A )
4240, 41syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ran  ( G  |`  ( `' G " A ) )  =  A )
4342eleq2d 2363 . . . . . . . . . . . . . . . 16  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( n  e.  ran  ( G  |`  ( `' G " A ) )  <->  n  e.  A
) )
44 f1ofn 5489 . . . . . . . . . . . . . . . . 17  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( G  |`  ( `' G " A ) )  Fn  ( `' G " A ) )
45 fvelrnb 5586 . . . . . . . . . . . . . . . . 17  |-  ( ( G  |`  ( `' G " A ) )  Fn  ( `' G " A )  ->  (
n  e.  ran  ( G  |`  ( `' G " A ) )  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n ) )
4644, 45syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( n  e.  ran  ( G  |`  ( `' G " A ) )  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `  m )  =  n ) )
4743, 46bitr3d 246 . . . . . . . . . . . . . . 15  |-  ( ( G  |`  ( `' G " A ) ) : ( `' G " A ) -1-1-onto-> A  ->  ( n  e.  A  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `  m )  =  n ) )
4839, 47syl 15 . . . . . . . . . . . . . 14  |-  ( A 
C_  NN  ->  ( n  e.  A  <->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n ) )
4948biimpa 470 . . . . . . . . . . . . 13  |-  ( ( A  C_  NN  /\  n  e.  A )  ->  E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n )
50 fvres 5558 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  ( `' G " A )  ->  (
( G  |`  ( `' G " A ) ) `  m )  =  ( G `  m ) )
5150eqeq1d 2304 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( `' G " A )  ->  (
( ( G  |`  ( `' G " A ) ) `  m )  =  n  <->  ( G `  m )  =  n ) )
5251biimpa 470 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  ( `' G " A )  /\  ( ( G  |`  ( `' G " A ) ) `  m )  =  n )  ->  ( G `  m )  =  n )
5352adantll 694 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  /\  ( ( G  |`  ( `' G " A ) ) `
 m )  =  n )  ->  ( G `  m )  =  n )
5424sseli 3189 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ( `' G " A )  ->  m  e.  om )
553, 4om2uzlt2i 11030 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  om  /\  m  e.  om )  ->  ( y  e.  m  <->  ( G `  y )  <  ( G `  m ) ) )
5654, 55sylan2 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  ->  ( y  e.  m  <->  ( G `  y )  <  ( G `  m )
) )
57 breq2 4043 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G `  m )  =  n  ->  (
( G `  y
)  <  ( G `  m )  <->  ( G `  y )  <  n
) )
5856, 57sylan9bb 680 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  /\  ( G `
 m )  =  n )  ->  (
y  e.  m  <->  ( G `  y )  <  n
) )
5953, 58syldan 456 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  om  /\  m  e.  ( `' G " A ) )  /\  ( ( G  |`  ( `' G " A ) ) `
 m )  =  n )  ->  (
y  e.  m  <->  ( G `  y )  <  n
) )
6059biimparc 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  y
)  <  n  /\  ( ( y  e. 
om  /\  m  e.  ( `' G " A ) )  /\  ( ( G  |`  ( `' G " A ) ) `
 m )  =  n ) )  -> 
y  e.  m )
6160exp44 596 . . . . . . . . . . . . . . 15  |-  ( ( G `  y )  <  n  ->  (
y  e.  om  ->  ( m  e.  ( `' G " A )  ->  ( ( ( G  |`  ( `' G " A ) ) `
 m )  =  n  ->  y  e.  m ) ) ) )
6261imp31 421 . . . . . . . . . . . . . 14  |-  ( ( ( ( G `  y )  <  n  /\  y  e.  om )  /\  m  e.  ( `' G " A ) )  ->  ( (
( G  |`  ( `' G " A ) ) `  m )  =  n  ->  y  e.  m ) )
6362reximdva 2668 . . . . . . . . . . . . 13  |-  ( ( ( G `  y
)  <  n  /\  y  e.  om )  ->  ( E. m  e.  ( `' G " A ) ( ( G  |`  ( `' G " A ) ) `
 m )  =  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
6449, 63syl5 28 . . . . . . . . . . . 12  |-  ( ( ( G `  y
)  <  n  /\  y  e.  om )  ->  ( ( A  C_  NN  /\  n  e.  A
)  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
6564exp4b 590 . . . . . . . . . . 11  |-  ( ( G `  y )  <  n  ->  (
y  e.  om  ->  ( A  C_  NN  ->  ( n  e.  A  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) ) )
6665com4l 78 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( A  C_  NN  ->  (
n  e.  A  -> 
( ( G `  y )  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) ) )
6766imp 418 . . . . . . . . 9  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( n  e.  A  ->  ( ( G `  y )  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) )
6867rexlimdv 2679 . . . . . . . 8  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( E. n  e.  A  ( G `  y )  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
6931, 68syld 40 . . . . . . 7  |-  ( ( y  e.  om  /\  A  C_  NN )  -> 
( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
7069ex 423 . . . . . 6  |-  ( y  e.  om  ->  ( A  C_  NN  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) )
7170com3l 75 . . . . 5  |-  ( A 
C_  NN  ->  ( A. m  e.  NN  E. n  e.  A  m  <  n  ->  ( y  e. 
om  ->  E. m  e.  ( `' G " A ) y  e.  m ) ) )
7271imp 418 . . . 4  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  ( y  e.  om  ->  E. m  e.  ( `' G " A ) y  e.  m ) )
7372ralrimiv 2638 . . 3  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A. y  e.  om  E. m  e.  ( `' G " A ) y  e.  m )
74 unbnn3 7375 . . 3  |-  ( ( ( `' G " A )  C_  om  /\  A. y  e.  om  E. m  e.  ( `' G " A ) y  e.  m )  -> 
( `' G " A )  ~~  om )
7524, 73, 74sylancr 644 . 2  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  ( `' G " A )  ~~  om )
76 entr 6929 . 2  |-  ( ( A  ~~  ( `' G " A )  /\  ( `' G " A )  ~~  om )  ->  A  ~~  om )
7717, 75, 76syl2anc 642 1  |-  ( ( A  C_  NN  /\  A. m  e.  NN  E. n  e.  A  m  <  n )  ->  A  ~~  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039    e. cmpt 4093   omcom 4672   `'ccnv 4704   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265    Fn wfn 5266   -->wf 5267   -1-1->wf1 5268   -onto->wfo 5269   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   reccrdg 6438    ~~ cen 6876   1c1 8754    + caddc 8756    < clt 8883   NNcn 9762   ZZ>=cuz 10246
This theorem is referenced by:  unben  12972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247
  Copyright terms: Public domain W3C validator